文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

炎症性肠病中的广泛铜死亡景观。

A broad cuproptosis landscape in inflammatory bowel disease.

机构信息

Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.

Research Institute of General Surgery, Jinling Hospital, Southeast University, Nanjing, China.

出版信息

Front Immunol. 2022 Nov 3;13:1031539. doi: 10.3389/fimmu.2022.1031539. eCollection 2022.


DOI:10.3389/fimmu.2022.1031539
PMID:36405733
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9669451/
Abstract

BACKGROUND: Cuproptosis, a genetic process of copper-dependent cell death linked to mitochondria respiration, demonstrates its correlation with inhibiting tumoral angiogenesis and motility. Recent studies have developed systematic bioinformatics frameworks to identify the association of cuproptosis with tumors but any non-neoplastic diseases. Therefore, against the background of an increased incidence of inflammatory bowel disease (IBD), the landscape of cuproptosis regulation in IBD is a critical need to be investigated. METHODS: The differentially expressed cuproptosis-related genes (DECRGs) were identified with human sequencing profiles for four inflammatory digestive disorders. Another four independent IBD datasets from GEO were used as a validation cohort. And experimental mice model provides another validation method. Using single sample gene set enrichment analysis (ssGSEA), receiver operating characteristic (ROC) curve, CIBERSORT, and consensus clustering algorithms, we explored the association between immune score and cuproptosis-related genes, as well as the diagnostic value of these genes. Molecular docking screened potential interaction of IBD drugs with the structural regulator by Autodock Vina. RESULTS: Cuproptosis-related regulators exhibited extensive differential expression in Crohn's Disease (CD), Ulcerative Colitis (UC), Celiac Disease (CEL), and IBD-induced cancer (IBD-CA) that share common differential genes (PDHA1, DBT, DLAT, LIAS). The differential expression of DECRGs was reverified in the validated cohort and immunohistochemistry assay. Moreover, the cell signaling pathways and ontology mainly focused on the mitochondrial respiratory function, which was highly enriched in Gene set enrichment analysis (GSEA). According to ssGSEA and ROC, when considering the four regulators, which showed robust association with immune infiltration in IBD, the area under the ROC (AUC) was 0.743. In addition, two clusters of consensus clustering based on the four regulators exhibit different immune phenotypes. According to molecular docking results, methotrexate gained the highest binding affinity to the main chain of key cuproptosis-related regulators compared with the remaining ten drugs. CONCLUSION: Cuproptosis-related regulators were widely linked to risk variants, immune cells, immune function, and drug efficacy in IBD. Regulation of cuproptosis may deeply influence the occurrence and development of patients with IBD.

摘要

背景:铜死亡是一种与线粒体呼吸相关的铜依赖性细胞死亡的遗传过程,它显示出与抑制肿瘤血管生成和运动性的相关性。最近的研究已经开发出系统的生物信息学框架来识别铜死亡与肿瘤的关联,但与任何非肿瘤性疾病无关。因此,在炎症性肠病(IBD)发病率增加的背景下,研究 IBD 中铜死亡调节的情况是非常必要的。

方法:通过人类四种炎症性消化疾病的测序图谱,确定差异表达的铜死亡相关基因(DECRGs)。另外四个来自 GEO 的独立 IBD 数据集被用作验证队列。实验小鼠模型提供了另一种验证方法。使用单样本基因集富集分析(ssGSEA)、受试者工作特征(ROC)曲线、CIBERSORT 和共识聚类算法,我们探讨了免疫评分与铜死亡相关基因之间的关联,以及这些基因的诊断价值。分子对接通过 Autodock Vina 筛选 IBD 药物与结构调节剂之间的潜在相互作用。

结果:铜死亡相关调节剂在克罗恩病(CD)、溃疡性结肠炎(UC)、乳糜泻(CEL)和 IBD 诱导的癌症(IBD-CA)中表现出广泛的差异表达,这些疾病有共同的差异基因(PDHA1、DBT、DLAT、LIAS)。在验证队列和免疫组织化学检测中,对 DECRG 的差异表达进行了重新验证。此外,细胞信号通路和本体论主要集中在线粒体呼吸功能上,这在基因集富集分析(GSEA)中高度富集。根据 ssGSEA 和 ROC,当考虑四个与 IBD 中免疫浸润有强关联的调节剂时,ROC 的曲线下面积(AUC)为 0.743。此外,基于四个调节剂的两种共识聚类聚类表现出不同的免疫表型。根据分子对接结果,与其余十种药物相比,甲氨蝶呤与关键铜死亡相关调节剂的主链具有最高的结合亲和力。

结论:铜死亡相关调节剂与 IBD 中的风险变异、免疫细胞、免疫功能和药物疗效广泛相关。铜死亡的调节可能会深刻影响 IBD 患者的发生和发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8771/9669451/9a0b3d8d4ea0/fimmu-13-1031539-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8771/9669451/ff1f7b29bea2/fimmu-13-1031539-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8771/9669451/454ed28871dd/fimmu-13-1031539-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8771/9669451/2fa6de9869ad/fimmu-13-1031539-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8771/9669451/a28d43b96fa7/fimmu-13-1031539-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8771/9669451/9cfc1e820d88/fimmu-13-1031539-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8771/9669451/9a0b3d8d4ea0/fimmu-13-1031539-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8771/9669451/ff1f7b29bea2/fimmu-13-1031539-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8771/9669451/454ed28871dd/fimmu-13-1031539-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8771/9669451/2fa6de9869ad/fimmu-13-1031539-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8771/9669451/a28d43b96fa7/fimmu-13-1031539-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8771/9669451/9cfc1e820d88/fimmu-13-1031539-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8771/9669451/9a0b3d8d4ea0/fimmu-13-1031539-g006.jpg

相似文献

[1]
A broad cuproptosis landscape in inflammatory bowel disease.

Front Immunol. 2022

[2]
Machine learning-based solution reveals cuproptosis features in inflammatory bowel disease.

Front Immunol. 2023

[3]
Identification of cuproptosis-associated subtypes and signature genes for diagnosis and risk prediction of Ulcerative colitis based on machine learning.

Front Immunol. 2023

[4]
Identification of cuproptosis hub genes contributing to the immune microenvironment in ulcerative colitis using bioinformatic analysis and experimental verification.

Front Immunol. 2023

[5]
Identification of immune infiltration and cuproptosis-related subgroups in Crohn's disease.

Front Immunol. 2022

[6]
Identification of cuproptosis-related subtypes, construction of a prognosis model, and tumor microenvironment landscape in gastric cancer.

Front Immunol. 2022

[7]
Comprehensive analysis of cuproptosis-related genes in immune infiltration and diagnosis in ulcerative colitis.

Front Immunol. 2022

[8]
Identification and immuno-infiltration analysis of cuproptosis regulators in human spermatogenic dysfunction.

Front Genet. 2023-3-29

[9]
Comprehensive analysis of cuproptosis-related genes in immune infiltration and development of a novel diagnostic model for acute kidney injury.

Ren Fail. 2024-12

[10]
Regulation mechanisms of disulfidptosis-related genes in ankylosing spondylitis and inflammatory bowel disease.

Front Immunol. 2024-2-16

引用本文的文献

[1]
The unique role of cuproptosis in the prognosis and treatment of rectum adenocarcinoma.

J Gastrointest Oncol. 2025-4-30

[2]
The role and intrinsic connection of cellular senescence and cell death in inflammatory bowel disease.

Front Cell Dev Biol. 2025-4-24

[3]
Big data analysis and machine learning of the role of cuproptosis-related long non-coding RNAs (CuLncs) in the prognosis and immune landscape of ovarian cancer.

Front Immunol. 2025-2-25

[4]
Integrated bioinformatics analysis identified cuproptosis-related hub gene Mpeg1 as potential biomarker in spinal cord injury.

Sci Rep. 2025-1-15

[5]
Screening and validating genes associated with cuproptosis in systemic lupus erythematosus by expression profiling combined with machine learning.

Biomol Biomed. 2025-3-7

[6]
Identification and experimental validation of cuproptosis regulatory program in a sepsis immune microenvironment through a combination of single-cell and bulk RNA sequencing.

Front Immunol. 2024

[7]
The Molecular Mechanisms of Cuproptosis and Small-Molecule Drug Design in Diabetes Mellitus.

Molecules. 2024-6-15

[8]
Identification of Key Disulfidptosis-Related Genes and Their Association with Gene Expression Subtypes in Crohn's Disease.

J Inflamm Res. 2024-6-7

[9]
Cuproptosis-related Gene Signatures and Immunological Characterization in Sepsis-associated Acute Lung Injury.

Comb Chem High Throughput Screen. 2024-5-22

[10]
DAMP sensing and sterile inflammation: intracellular, intercellular and inter-organ pathways.

Nat Rev Immunol. 2024-10

本文引用的文献

[1]
PM2.5 promotes NSCLC carcinogenesis through translationally and transcriptionally activating DLAT-mediated glycolysis reprograming.

J Exp Clin Cancer Res. 2022-7-22

[2]
Copper induces cell death by targeting lipoylated TCA cycle proteins.

Science. 2022-3-18

[3]
Extraintestinal Manifestations of Inflammatory Bowel Disease: Current Concepts, Treatment, and Implications for Disease Management.

Gastroenterology. 2021-10

[4]
The role of precision nutrition in the modulation of microbial composition and function in people with inflammatory bowel disease.

Lancet Gastroenterol Hepatol. 2021-9

[5]
Approach to the Management of Recently Diagnosed Inflammatory Bowel Disease Patients: A User's Guide for Adult and Pediatric Gastroenterologists.

Gastroenterology. 2021-7

[6]
Colonic Strictures in Inflammatory Bowel Disease: Epidemiology, Complications, and Management.

J Crohns Colitis. 2021-10-7

[7]
The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity.

Cell Metab. 2021-3-2

[8]
Altered mitochondrial function in spermatozoa from patients with repetitive fertilization failure after ICSI revealed by proteomics.

Andrology. 2021-7

[9]
Inflammatory bowel disease: tri-directional relationship between microbiota, immune system and intestinal epithelium.

Crit Rev Microbiol. 2021-3

[10]
Oral 5-aminosalicylic acid for maintenance of remission in ulcerative colitis.

Cochrane Database Syst Rev. 2020-8-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索