文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多 WGCNA 和单细胞测序分析鉴定钙化性主动脉瓣疾病的枢纽基因并揭示其免疫浸润图谱。

Identifying hub genes of calcific aortic valve disease and revealing the immune infiltration landscape based on multiple WGCNA and single-cell sequence analysis.

机构信息

Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

出版信息

Front Immunol. 2022 Nov 4;13:1035285. doi: 10.3389/fimmu.2022.1035285. eCollection 2022.


DOI:10.3389/fimmu.2022.1035285
PMID:36405745
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9673246/
Abstract

BACKGROUND: Calcific aortic valve disease (CAVD) is a progressive fibrocalcific disease that can be treated only through valve replacement. This study aimed to determine the role of hub genes and immune cell infiltration in CAVD progression. METHODS: In this study, bioinformatics analysis was used to identify hub genes involved in CAVD. The datasets were downloaded from the Gene Expression Omnibus (GEO) database. Gene expression differences were evaluated pathway and Gene Ontology analyses. Weighted gene co-expression network analysis (WGCNA) and differentially expressed genes were used to screen hub genes. The CIBERSORT algorithm was used to compare immune infiltration into the calcified aortic valve based on the hub genes between high- and low-expression groups. We also performed single-cell RNA sequencing based on six different human aortic valve leaflets. The expression of hub genes was identified in human and mouse samples through quantitative real-time polymerase chain reaction (qPCR), immunohistochemistry, immunofluorescence, and ELISA, and clinical features of the patients were investigated. RESULTS: In total, 454 differentially expressed genes were obtained from the GEO database. WGCNA was used to find 12 co-expression modules in the Array Express database, of which one hub module (brown module) was most correlated with CAVD. Two hub genes were identified after combining the differentially expressed genes and . Regarding these genes, the immune infiltration profiles varied between high- and low-expression groups. Compared with that in the low hub gene expression group, the high hub gene expression group had a higher proportion of activated NK cells ( < 0.01) and M1 macrophages ( < 0.05). The expression of and was consistent with single-gene RNA sequencing results, confirming that the expression levels of these two hub genes are significantly upregulated in patients with CAVD ( < 0.01). Furthermore, these results were verified using mouse and human samples by performing immunofluorescence, immunohistochemistry, qPCR, and ELISA analyses. Finally, the localization of S100A8 and S100A9 in monocytes and macrophages was confirmed immunofluorescence using human aortic valves. CONCLUSION: These results demonstrate that and are two hub genes involved in CAVD, which might play an important role in its development through immune-related signaling pathways.

摘要

背景:钙化性主动脉瓣疾病(CAVD)是一种进行性的纤维钙化性疾病,只能通过瓣膜置换来治疗。本研究旨在确定关键基因和免疫细胞浸润在 CAVD 进展中的作用。

方法:本研究使用生物信息学分析鉴定与 CAVD 相关的关键基因。数据集从基因表达综合数据库(GEO)中下载。通过通路和基因本体论分析评估基因表达差异。使用加权基因共表达网络分析(WGCNA)和差异表达基因筛选关键基因。根据高低表达组之间的关键基因,使用 CIBERSORT 算法比较钙化主动脉瓣的免疫浸润情况。我们还基于 6 个人类主动脉瓣叶进行了单细胞 RNA 测序。通过定量实时聚合酶链反应(qPCR)、免疫组织化学、免疫荧光和 ELISA 鉴定关键基因在人类和小鼠样本中的表达,并研究了患者的临床特征。

结果:总共从 GEO 数据库中获得了 454 个差异表达基因。使用 WGCNA 在 ArrayExpress 数据库中找到 12 个共表达模块,其中一个关键模块(棕色模块)与 CAVD 相关性最强。结合差异表达基因和 ,确定了 2 个关键基因。关于这些基因,高低表达组之间的免疫浸润谱存在差异。与低关键基因表达组相比,高关键基因表达组中激活的 NK 细胞比例更高(<0.01),M1 巨噬细胞比例更高(<0.05)。和 的表达与单细胞 RNA 测序结果一致,证实这两个关键基因在 CAVD 患者中的表达水平显著上调(<0.01)。此外,通过在小鼠和人类样本中进行免疫荧光、免疫组织化学、qPCR 和 ELISA 分析验证了这些结果。最后,通过免疫荧光验证了 S100A8 和 S100A9 在单核细胞和巨噬细胞中的定位。

结论:这些结果表明,和 是参与 CAVD 的两个关键基因,它们可能通过免疫相关信号通路在其发展中发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/7739515094f0/fimmu-13-1035285-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/bab3d229e300/fimmu-13-1035285-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/23499aeede84/fimmu-13-1035285-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/22ddf4c8463f/fimmu-13-1035285-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/7cda2683b758/fimmu-13-1035285-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/018c008aaea8/fimmu-13-1035285-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/6449ea66094a/fimmu-13-1035285-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/baa6df6bedf4/fimmu-13-1035285-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/1f7841aa7b76/fimmu-13-1035285-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/56b61fcdd237/fimmu-13-1035285-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/2c1f7ba5d872/fimmu-13-1035285-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/cdb2fe1e3c4a/fimmu-13-1035285-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/88cf327f181b/fimmu-13-1035285-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/7739515094f0/fimmu-13-1035285-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/bab3d229e300/fimmu-13-1035285-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/23499aeede84/fimmu-13-1035285-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/22ddf4c8463f/fimmu-13-1035285-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/7cda2683b758/fimmu-13-1035285-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/018c008aaea8/fimmu-13-1035285-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/6449ea66094a/fimmu-13-1035285-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/baa6df6bedf4/fimmu-13-1035285-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/1f7841aa7b76/fimmu-13-1035285-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/56b61fcdd237/fimmu-13-1035285-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/2c1f7ba5d872/fimmu-13-1035285-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/cdb2fe1e3c4a/fimmu-13-1035285-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/88cf327f181b/fimmu-13-1035285-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/9673246/7739515094f0/fimmu-13-1035285-g013.jpg

相似文献

[1]
Identifying hub genes of calcific aortic valve disease and revealing the immune infiltration landscape based on multiple WGCNA and single-cell sequence analysis.

Front Immunol. 2022

[2]
Identification of key genes in calcific aortic valve disease via weighted gene co-expression network analysis.

BMC Med Genomics. 2021-5-21

[3]
Potential biomarkers and immune cell infiltration involved in aortic valve calcification identified through integrated bioinformatics analysis.

Front Physiol. 2022-12-15

[4]
Identification of key genes involved in calcific aortic valve disease based on integrated bioinformatics analysis.

Exp Biol Med (Maywood). 2023-1

[5]
Identification of key genes and pathways in calcific aortic valve disease by bioinformatics analysis.

J Thorac Dis. 2019-12

[6]
Screening of immune-related secretory proteins linking chronic kidney disease with calcific aortic valve disease based on comprehensive bioinformatics analysis and machine learning.

J Transl Med. 2023-6-1

[7]
Exploring potential genes and pathways related to calcific aortic valve disease.

Gene. 2022-1-15

[8]
Multiomics identification of ALDH9A1 as a crucial immunoregulatory molecule involved in calcific aortic valve disease.

Sci Rep. 2024-10-9

[9]
Investigation of autophagy‑related genes and immune infiltration in calcific aortic valve disease: A bioinformatics analysis and experimental validation.

Exp Ther Med. 2024-3-26

[10]
Transcriptome Sequencing Data Reveal LncRNA-miRNA-mRNA Regulatory Network in Calcified Aortic Valve Disease.

Front Cardiovasc Med. 2022-5-26

引用本文的文献

[1]
Identification and validation of ANXA3 and SOCS3 as biomarkers for acute myocardial infarction related to sphingolipid metabolism.

Hereditas. 2025-8-4

[2]
Macrophages in Calcific Aortic Valve Disease: Paracrine and Juxtacrine Disease Drivers.

Biomolecules. 2024-12-2

[3]
Single-cell analysis reveals the loss of FABP4-positive proliferating valvular endothelial cells relates to functional mitral regurgitation.

BMC Med. 2024-12-20

[4]
Integrated analysis of single-cell RNA sequencing and bulk transcriptome data identifies a pyroptosis-associated diagnostic model for Parkinson's disease.

Sci Rep. 2024-11-18

[5]
Identification of BANF1 as a novel prognostic biomarker in gastric cancer and validation via and experiments.

Aging (Albany NY). 2024-1-22

[6]
Identification of crucial modules and genes associated with backfat tissue development by WGCNA in Ningxiang pigs.

Front Genet. 2023-8-17

[7]
Multimodal Analytical Tools to Enhance Mechanistic Understanding of Aortic Valve Calcification.

Am J Pathol. 2024-4

[8]
Network-Guided Multiomic Mapping of Aortic Valve Calcification.

Arterioscler Thromb Vasc Biol. 2023-3

本文引用的文献

[1]
Transcriptome Sequencing Data Reveal LncRNA-miRNA-mRNA Regulatory Network in Calcified Aortic Valve Disease.

Front Cardiovasc Med. 2022-5-26

[2]
SUV39H2/KMT1B Inhibits the cardiomyocyte senescence phenotype by down-regulating BTG2/PC3.

Aging (Albany NY). 2021-9-24

[3]
Identification of key genes in calcific aortic valve disease via weighted gene co-expression network analysis.

BMC Med Genomics. 2021-5-21

[4]
Anemoside B4 ameliorates TNBS-induced colitis through S100A9/MAPK/NF-κB signaling pathway.

Chin Med. 2021-1-18

[5]
Cell-Type Transcriptome Atlas of Human Aortic Valves Reveal Cell Heterogeneity and Endothelial to Mesenchymal Transition Involved in Calcific Aortic Valve Disease.

Arterioscler Thromb Vasc Biol. 2020-10-22

[6]
MicroRNA-34c Inhibits Osteogenic Differentiation and Valvular Interstitial Cell Calcification via STC1-Mediated JNK Pathway in Calcific Aortic Valve Disease.

Front Physiol. 2020-8-31

[7]
Genetic and In Vitro Inhibition of and Calcific Aortic Valve Stenosis.

JACC Basic Transl Sci. 2020-7-1

[8]
Transcriptional Profiling of Normal, Stenotic, and Regurgitant Human Aortic Valves.

Genes (Basel). 2020-7-14

[9]
Aortic Valve Stenosis: From Basic Mechanisms to Novel Therapeutic Targets.

Arterioscler Thromb Vasc Biol. 2020-3-12

[10]
Identification of key genes and pathways in calcific aortic valve disease by bioinformatics analysis.

J Thorac Dis. 2019-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索