用于间歇式酯交换过程控制的批次间自适应迭代学习控制-显式模型预测控制双层框架

Batch-to-Batch Adaptive Iterative Learning Control-Explicit Model Predictive Control Two-Tier Framework for the Control of Batch Transesterification Process.

作者信息

Gupta Nikita, De Riju, Kodamana Hariprasad, Bhartiya Sharad

机构信息

Department of Chemical Engineering, IIT Delhi, New Delhi110016, India.

Department of Chemical Engineering, BITS Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa403726, India.

出版信息

ACS Omega. 2022 Oct 31;7(45):41001-41012. doi: 10.1021/acsomega.2c04255. eCollection 2022 Nov 15.

Abstract

To harness energy security and reduce carbon emissions, humankind is trying to switch toward renewable energy resources. To this extent, fatty acid methyl esters, also known as biodiesel, are popularly used as a green fuel. Fatty acid methyl esters can be produced by a batch transesterification reaction between vegetable oil and alcohol. Being a batch process, fatty acid methyl esters production is beset with issues such as uncertainties and unsteady state behavior, and therefore, adequate process control measures are necessitated. In this study, we have proposed a novel two-tier framework for the control of the fatty acid methyl esters production process. The proposed approach combines the constrained batch-to-batch iterative learning control technique and explicit model predictive control to obtain the desired concentration of the fatty acid methyl esters. In particular, the batch-to-batch iterative learning control technique is used to generate reactor temperature set-points, which is further utilized to obtain an optimal coolant flow rate by solving a quadratic objective cost function, with the help of explicit model predictive control. Our simulation results indicate that the fatty acid methyl esters concentration trajectory converges to the desired batch trajectory within four batches for uncertainty in activation energy and six batches for uncertainty in both inlet concentration of triglyceride and in activation energy even in the presence of process disturbances. The proposed approach was compared to the heuristic-based approach and constraint iterative learning control approach to showcase its efficacy.

摘要

为了保障能源安全并减少碳排放,人类正试图转向可再生能源。在此背景下,脂肪酸甲酯,也就是俗称的生物柴油,作为一种绿色燃料被广泛使用。脂肪酸甲酯可通过植物油与醇之间的间歇式酯交换反应制得。作为一种间歇式工艺,脂肪酸甲酯的生产面临着诸如不确定性和非稳态行为等问题,因此,需要采取适当的过程控制措施。在本研究中,我们提出了一种用于控制脂肪酸甲酯生产过程的新型两层框架。所提出的方法将约束批次间迭代学习控制技术与显式模型预测控制相结合,以获得所需浓度的脂肪酸甲酯。具体而言,批次间迭代学习控制技术用于生成反应器温度设定点,借助显式模型预测控制,通过求解二次目标成本函数,进一步利用该设定点来获得最佳冷却剂流速。我们的仿真结果表明,即使存在过程干扰,对于活化能的不确定性,脂肪酸甲酯浓度轨迹在四个批次内收敛到所需的批次轨迹;对于甘油三酯入口浓度和活化能两者的不确定性,在六个批次内收敛到所需的批次轨迹。将所提出的方法与基于启发式的方法和约束迭代学习控制方法进行了比较,以展示其有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4ae/9670101/604da59facce/ao2c04255_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索