Zhou Chengyu, Jia Li, Zhou Yang
Department of Automation, College of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072, China.
Department of Automation, College of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072, China.
ISA Trans. 2023 Apr;135:309-324. doi: 10.1016/j.isatra.2022.09.034. Epub 2022 Sep 30.
Iterative learning model predictive control (ILMPC) has been considered as potential control strategy for batch processes. ILMPC can converge to the desired reference trajectory with high precision along batches and ensure system stability within batches. However, as a model-based control method, the control performance of the ILMPC algorithm deteriorates when exists model parameter uncertainty. Therefore, guaranteeing system tracking performance in the case of model parameter uncertainty is a challenging task in the framework designing of ILMPC method. To this end, we develop a two-stage robust ILMPC strategy for batch processes, which integrates the robust iterative learning control (ILC) in the domain of batch-axis and robust model predictive control (MPC) in the domain of time-axis into one comprehensive control scheme. The integrated control law of the developed two-stage robust ILMPC algorithm is obtained by solving two convex optimization problems. As a result, the developed control method obtains faster convergence speed and better tracking performance in the case of model parameter uncertainty. Moreover, the convergence analysis of the system is presented. Finally, comparative simulations are provided to verify the superiority of the developed control algorithm.
迭代学习模型预测控制(ILMPC)已被视为间歇过程的潜在控制策略。ILMPC能够沿着批次高精度地收敛到期望的参考轨迹,并确保批次内系统的稳定性。然而,作为一种基于模型的控制方法,当存在模型参数不确定性时,ILMPC算法的控制性能会变差。因此,在ILMPC方法的框架设计中,在模型参数不确定的情况下保证系统的跟踪性能是一项具有挑战性的任务。为此,我们为间歇过程开发了一种两阶段鲁棒ILMPC策略,该策略将批次轴域上的鲁棒迭代学习控制(ILC)和时间轴域上的鲁棒模型预测控制(MPC)集成到一个综合控制方案中。通过求解两个凸优化问题,得到了所开发的两阶段鲁棒ILMPC算法的综合控制律。结果表明,所开发的控制方法在模型参数不确定的情况下具有更快的收敛速度和更好的跟踪性能。此外,还给出了系统的收敛性分析。最后,通过对比仿真验证了所开发控制算法的优越性。