Suppr超能文献

通过遗传算法优化的反向传播人工神经网络进行识别以及验证用于胰腺癌诊断和预后的四基因特征

Identification by genetic algorithm optimized back propagation artificial neural network and validation of a four-gene signature for diagnosis and prognosis of pancreatic cancer.

作者信息

Li Zhenchong, Ma Zuyi, Zhou Qi, Wang Shujie, Yan Qian, Zhuang Hongkai, Zhou Zixuan, Liu Chunsheng, Wu Zhongshi, Zhao Jinglin, Huang Shanzhou, Zhang Chuanzhao, Hou Baohua

机构信息

Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.

Heyuan People's Hospital, Heyuan 517000, China.

出版信息

Heliyon. 2022 Nov 9;8(11):e11321. doi: 10.1016/j.heliyon.2022.e11321. eCollection 2022 Nov.

Abstract

BACKGROUND

Although some improvements in the management of pancreatic cancer (PC) have been made, no major breakthroughs in terms of biomarker discovery or effective treatment have emerged. Here, we applied artificial intelligence (AI)-based methods to develop a model to diagnose PC and predict survival outcome.

METHODS

Multiple bioinformatics methods, including Limma Package, were performed to identify differentially expressed genes (DEGs) in PC. A Back Propagation (BP) model was constructed, followed by Genetic Algorithm (GA) filtering and verification of its prognosis capacity in the TCGA cohort. Furthermore, we validated the protein expression of the selected DEGs in 92 clinical PC tissues using immunohistochemistry. Finally, intro studies were performed to assess the function of and on pancreatic ductal adenocarcinoma (PDAC) cells proliferation and apoptosis.

RESULTS

Four candidate genes (, , , and ) were selected to establish a four-gene signature for PC. The gene signature was validated in the TCGA PC cohort, and found to show satisfactory discrimination and prognostic power. Areas under the curve (AUC) values of overall survival were both greater than 0.60 in the TCGA training cohort, test cohort, and the entire cohort. Kaplan-Meier analyses showed that high-risk group had a significantly shorter overall survival and disease-free survival than the low-risk group. Further, the elevated expression of and in PC tissues was validated in the TCGA + GETx datasets and 92 clinical PC tissues, and was significantly associated with poor survival in PC. In PDAC cell line, knockdown inhibited cells proliferation, migration and promoted cells apoptosis.

CONCLUSIONS

Using Limma Package and GA-ANN, we developed and validated a diagnostic and prognostic gene signature that yielded excellent predictive capacity for PC patients' survival. In vitro studies were further conducted to verify the functions of in PC progression.

摘要

背景

尽管胰腺癌(PC)的管理已取得一些进展,但在生物标志物发现或有效治疗方面尚未出现重大突破。在此,我们应用基于人工智能(AI)的方法开发了一个模型来诊断PC并预测生存结果。

方法

采用多种生物信息学方法,包括Limma软件包,以鉴定PC中差异表达基因(DEG)。构建了一个反向传播(BP)模型,随后进行遗传算法(GA)筛选并在TCGA队列中验证其预后能力。此外,我们使用免疫组织化学在92个临床PC组织中验证了所选DEG的蛋白表达。最后,进行体外研究以评估[具体基因1]和[具体基因2]对胰腺导管腺癌(PDAC)细胞增殖和凋亡的作用。

结果

选择了四个候选基因([具体基因1]、[具体基因2]、[具体基因3]和[具体基因4])来建立PC的四基因特征。该基因特征在TCGA PC队列中得到验证,并显示出令人满意的区分和预后能力。在TCGA训练队列、测试队列和整个队列中,总生存曲线下面积(AUC)值均大于0.60。Kaplan-Meier分析表明,高风险组的总生存期和无病生存期明显短于低风险组。此外,在TCGA + GETx数据集和92个临床PC组织中验证了PC组织中[具体基因1]和[具体基因2]的表达升高,且与PC患者的不良生存显著相关。在PDAC细胞系中,[具体基因1]敲低抑制细胞增殖、迁移并促进细胞凋亡。

结论

使用Limma软件包和GA-ANN,我们开发并验证了一种诊断和预后基因特征,该特征对PC患者的生存具有出色的预测能力。进一步进行体外研究以验证[具体基因1]在PC进展中的功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验