Suppr超能文献

一种再现SARS-CoV-2 S RBD/ACE2结合位点的简化模型的结构分析

Structural analysis of a simplified model reproducing SARS-CoV-2 S RBD/ACE2 binding site.

作者信息

Buonocore Michela, Santoro Angelo, Grimaldi Manuela, Covelli Verdiana, Firoznezhad Mohammad, Rodriquez Manuela, Santin Matteo, D'Ursi Anna Maria

机构信息

University of Salerno, Department of Pharmacy, Via Giovanni Paolo II, 132-84084 Fisciano, Salerno, Italy.

University of Naples Federico II, Department of Veterinary Pathology, via Federico Delpino 1, 80137, Naples, Italy.

出版信息

Heliyon. 2022 Nov 15;8(11):e11568. doi: 10.1016/j.heliyon.2022.e11568. eCollection 2022 Nov.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an RNA virus identified as the cause of the coronavirus outbreak in December 2019 (COVID-19). Like all the RNA viruses, SARS-CoV-2 constantly evolves through mutations in its genome, accumulating 1-2 nucleotide changes every month, giving the virus a selective advantage through enhanced transmissibility, greater pathogenicity, and the possibility of circumventing immunity previously acquired by an individual either by natural infection or by vaccination. Several SARS-CoV-2 variants of concern (VoC) have been identified, among which we find Alpha (Lineage B.1.1.7), Beta (Lineage B.1.351), and Gamma (Lineage P.1) variants. Most of the mutations occur in the spike (S) protein, a surface glycoprotein that plays a crucial role in viral infection; the S protein binds the host cell receptor, the angiotensin-converting enzyme of type 2 (ACE2) via the receptor binding domain (RBD) and catalyzes the fusion of the viral membrane with the host cell. In this work, we present the development of a simplified system that would afford to study the change in the SARS-CoV-2 S RBD/ACE2 binding related to the frequent mutations. In particular, we synthesized and studied the structure of short amino acid sequences, mimicking the two proteins' critical portions. Variations in the residues were easily managed through the one-point alteration of the sequences. Nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopies provide insights into ACE2 and SARS-CoV-2 S RBD structure with its related three variants (Alpha, Beta, and Gamma). Spectroscopy data supported by molecular dynamics lead to the description of an ACE2/RBD binding model in which the effect of a single amino acid mutation in changing the binding of S protein to the ACE2 receptor is predictable.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)是一种RNA病毒,被确定为2019年12月冠状病毒爆发(COVID-19)的病因。与所有RNA病毒一样,SARS-CoV-2通过其基因组中的突变不断进化,每月积累1-2个核苷酸变化,通过增强传播性、更大的致病性以及规避个体先前通过自然感染或疫苗接种获得的免疫力的可能性,赋予病毒选择性优势。已经鉴定出几种值得关注的SARS-CoV-2变异株(VoC),其中包括阿尔法(谱系B.1.1.7)、贝塔(谱系B.1.351)和伽马(谱系P.1)变异株。大多数突变发生在刺突(S)蛋白中,刺突蛋白是一种表面糖蛋白,在病毒感染中起关键作用;S蛋白通过受体结合域(RBD)与宿主细胞受体2型血管紧张素转换酶(ACE2)结合,并催化病毒膜与宿主细胞的融合。在这项工作中,我们展示了一个简化系统的开发,该系统将有助于研究与频繁突变相关的SARS-CoV-2 S RBD/ACE2结合变化。特别是,我们合成并研究了模仿这两种蛋白质关键部分的短氨基酸序列的结构。通过序列的单点改变可以轻松管理残基的变化。核磁共振(NMR)和圆二色性(CD)光谱为ACE2和SARS-CoV-2 S RBD结构及其相关的三种变异株(阿尔法、贝塔和伽马)提供了深入了解。由分子动力学支持的光谱数据导致了ACE2/RBD结合模型的描述,其中单个氨基酸突变对S蛋白与ACE2受体结合变化的影响是可预测的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf3/9674920/d6259bb86ca0/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验