Ali Fedaa, Kasry Amal, Amin Muhamed
Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), El Sherouk City, Suez Desert Road, Cairo 1183, Egypt.
Department of Sciences, University College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG Groningen, The Netherlands.
Med Drug Discov. 2021 Jun;10:100086. doi: 10.1016/j.medidd.2021.100086. Epub 2021 Mar 2.
SARS-CoV-2 is a global challenge due to its ability to spread much faster than the SARS-CoV, which was attributed to the mutations in the receptor binding domain (RBD). These mutations enhanced the electrostatic interactions. Recently, a new strain is reported in the UK that includes a mutation (N501Y) in the RBD, that is possibly increasing the infection rate. Here, using Molecular Dynamics simulations (MD) and Monte Carlo (MC) sampling, we show that the N501 mutation enhanced the electrostatic interactions due to the formation of a strong hydrogen bond between SARS-CoV-2-T500 and ACE2-D355 near the mutation site. In addition, we observed that the electrostatic interactions between the SARS-CoV-2 and ACE2 in the wild type and the mutant are dominated by salt-bridges formed between SARS-CoV-2-K417 and ACE2-D30, SARS-CoV-2-K458, ACE2-E23, and SARS-CoV-2-R403 and ACE2-E37. These interactions contributed more than 40% of the total binding energies.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)是一项全球性挑战,因为它的传播速度比严重急性呼吸综合征冠状病毒(SARS-CoV)快得多,这归因于受体结合域(RBD)中的突变。这些突变增强了静电相互作用。最近,英国报告了一种新毒株,其RBD中存在一种突变(N501Y),这可能会提高感染率。在此,我们使用分子动力学模拟(MD)和蒙特卡罗(MC)采样表明,N501突变由于在突变位点附近的SARS-CoV-2-T500和血管紧张素转化酶2(ACE2)-D355之间形成了强氢键而增强了静电相互作用。此外,我们观察到野生型和突变型SARS-CoV-2与ACE2之间的静电相互作用主要由SARS-CoV-2-K417与ACE2-D30、SARS-CoV-2-K458与ACE2-E23以及SARS-CoV-2-R403与ACE2-E37之间形成的盐桥主导。这些相互作用占总结合能的40%以上。