Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
China National Clinical Research Center for Neurological Diseases, Jing-Jin Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing 100000, China.
Oxid Med Cell Longev. 2022 Nov 9;2022:9233749. doi: 10.1155/2022/9233749. eCollection 2022.
Mitophagy and oxidative stress play important roles in Parkinson's disease (PD). Dysregulated mitophagy exacerbates mitochondrial oxidative damage; however, the regulatory mechanism of mitophagy is unclear. Here, we provide a potential mechanistic link between c-Abl, a nonreceptor tyrosine kinase, and mitophagy in PD progression. We found that c-Abl activation reduces the interaction of prohibitin 2 (PHB2) and microtubule-associated protein 1 light chain 3 (LC3) and decreases the expressive level of antioxidative stress proteins, including nuclear factor erythroid 2-related factor 2 (Nrf2), NADPH quinone oxidoreductase-1 (NQO-1), and the antioxidant enzyme heme oxygenase-1 (HO-1) in 1-methyl-4-phenylpyridinium- (MPP-) lesioned SH-SY5Y cells. Importantly, we found that MPP can increase the expression of phosphorylated proteins at the tyrosine site of PHB2 and the interaction of c-Abl with PHB2. We showed for the first time that PHB2 by changing tyrosine (Y) to aspartate (D) at site 121 resulted in impaired binding of PHB2 and LC3 in vitro. Moreover, silencing of PHB2 can decrease the interaction of PHB2 and LC3 and exacerbate the loss of dopaminergic neurons. We also found that STI 571, a c-Abl family kinase inhibitor, can decrease dopaminergic neuron damage and ameliorate MPTP-induced behavioral deficits in PD mice. Taken together, our findings highlight a novel molecular mechanism for aberrant PHB2 phosphorylation as an inhibitor of c-Abl activity and suggest that c-Abl and PHB2 are potential therapeutic targets for the treatment of individuals with PD. However, these results need to be further validated in PHB2 Y121D mice.
自噬和氧化应激在帕金森病(PD)中起重要作用。调节异常的自噬会加剧线粒体氧化损伤;然而,自噬的调节机制尚不清楚。在这里,我们提供了一个非受体酪氨酸激酶 c-Abl 与 PD 进展中的自噬之间的潜在机制联系。我们发现,c-Abl 的激活减少了抑素 2(PHB2)和微管相关蛋白 1 轻链 3(LC3)的相互作用,并降低了抗氧化应激蛋白的表达水平,包括核因子红细胞 2 相关因子 2(Nrf2)、NADPH 醌氧化还原酶-1(NQO-1)和抗氧化酶血红素加氧酶-1(HO-1)在 1-甲基-4-苯基吡啶(MPP-)损伤的 SH-SY5Y 细胞中。重要的是,我们发现 MPP 可以增加 PHB2 酪氨酸(Y)位点磷酸化蛋白的表达和 c-Abl 与 PHB2 的相互作用。我们首次表明,PHB2 第 121 位的酪氨酸(Y)突变为天冬氨酸(D)会导致 PHB2 与 LC3 的结合受损。此外,沉默 PHB2 可以减少 PHB2 和 LC3 的相互作用,并加剧多巴胺能神经元的丢失。我们还发现,c-Abl 家族激酶抑制剂 STI 571 可以减少多巴胺能神经元损伤并改善 PD 小鼠的 MPTP 诱导的行为缺陷。总之,我们的研究结果强调了 PHB2 异常磷酸化作为 c-Abl 活性抑制剂的新分子机制,并表明 c-Abl 和 PHB2 是治疗 PD 患者的潜在治疗靶点。然而,这些结果需要在 PHB2 Y121D 小鼠中进一步验证。