文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

WINNER: A network biology tool for biomolecular characterization and prioritization.

作者信息

Nguyen Thanh, Yue Zongliang, Slominski Radomir, Welner Robert, Zhang Jianyi, Chen Jake Y

机构信息

Informatics Institute in School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States.

Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States.

出版信息

Front Big Data. 2022 Nov 4;5:1016606. doi: 10.3389/fdata.2022.1016606. eCollection 2022.


DOI:10.3389/fdata.2022.1016606
PMID:36407327
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9672476/
Abstract

BACKGROUND AND CONTRIBUTION: In network biology, molecular functions can be characterized by network-based inference, or "guilt-by-associations." PageRank-like tools have been applied in the study of biomolecular interaction networks to obtain further the relative significance of all molecules in the network. However, there is a great deal of inherent noise in widely accessible data sets for gene-to-gene associations or protein-protein interactions. How to develop robust tests to expand, filter, and rank molecular entities in disease-specific networks remains an ad hoc data analysis process. RESULTS: We describe a new biomolecular characterization and prioritization tool called Weighted In-Network Node Expansion and Ranking (WINNER). It takes the input of any molecular interaction network data and generates an optionally expanded network with all the nodes ranked according to their relevance to one another in the network. To help users assess the robustness of results, WINNER provides two different types of statistics. The first type is a node-expansion -value, which helps evaluate the statistical significance of adding "non-seed" molecules to the original biomolecular interaction network consisting of "seed" molecules and molecular interactions. The second type is a node-ranking -value, which helps evaluate the relative statistical significance of the contribution of each node to the overall network architecture. We validated the robustness of WINNER in ranking top molecules by spiking noises in several network permutation experiments. We have found that node degree-preservation randomization of the gene network produced normally distributed ranking scores, which outperform those made with other gene network randomization techniques. Furthermore, we validated that a more significant proportion of the WINNER-ranked genes was associated with disease biology than existing methods such as PageRank. We demonstrated the performance of WINNER with a few case studies, including Alzheimer's disease, breast cancer, myocardial infarctions, and Triple negative breast cancer (TNBC). In all these case studies, the expanded and top-ranked genes identified by WINNER reveal disease biology more significantly than those identified by other gene prioritizing software tools, including Ingenuity Pathway Analysis (IPA) and DiAMOND. CONCLUSION: WINNER ranking strongly correlates to other ranking methods when the network covers sufficient node and edge information, indicating a high network quality. WINNER users can use this new tool to robustly evaluate a list of candidate genes, proteins, or metabolites produced from high-throughput biology experiments, as long as there is available gene/protein/metabolic network information.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/57bc922d9d58/fdata-05-1016606-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/1515fe704811/fdata-05-1016606-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/3517de729ddf/fdata-05-1016606-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/d47ce31f2864/fdata-05-1016606-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/0dba3f29ec8a/fdata-05-1016606-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/25f7c01a6f4f/fdata-05-1016606-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/9862be24e82e/fdata-05-1016606-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/61b2337d1384/fdata-05-1016606-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/88056a32f2d2/fdata-05-1016606-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/1bd9c9357645/fdata-05-1016606-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/e1be1ea53c52/fdata-05-1016606-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/57bc922d9d58/fdata-05-1016606-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/1515fe704811/fdata-05-1016606-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/3517de729ddf/fdata-05-1016606-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/d47ce31f2864/fdata-05-1016606-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/0dba3f29ec8a/fdata-05-1016606-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/25f7c01a6f4f/fdata-05-1016606-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/9862be24e82e/fdata-05-1016606-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/61b2337d1384/fdata-05-1016606-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/88056a32f2d2/fdata-05-1016606-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/1bd9c9357645/fdata-05-1016606-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/e1be1ea53c52/fdata-05-1016606-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/9672476/57bc922d9d58/fdata-05-1016606-g0011.jpg

相似文献

[1]
WINNER: A network biology tool for biomolecular characterization and prioritization.

Front Big Data. 2022-11-4

[2]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[3]
WIPER: Weighted in-Path Edge Ranking for biomolecular association networks.

Quant Biol. 2019-12

[4]
SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.

BMC Med Genomics. 2020-4-3

[5]
An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods.

Artif Intell Med. 2014-6

[6]
Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.

BMC Bioinformatics. 2016-11-10

[7]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[8]
ProphNet: a generic prioritization method through propagation of information.

BMC Bioinformatics. 2014-1-10

[9]
Gene Interaction Hierarchy Analysis Can Be an Effective Tool for Managing Big Data Related to Unilateral Traumatic Brain Injury

2015

[10]
Network-based ranking methods for prediction of novel disease associated microRNAs.

Comput Biol Chem. 2015-10

引用本文的文献

[1]
Cell-Cycle-Specific Autoencoding Improves Cluster Analysis of Cycling Cardiomyocytes.

Stem Cells. 2024-5-15

本文引用的文献

[1]
Cardiomyocyte Cell-Cycle Regulation in Neonatal Large Mammals: Single Nucleus RNA-Sequencing Data Analysis an Artificial-Intelligence-Based Pipeline.

Front Bioeng Biotechnol. 2022-7-4

[2]
Single Nucleus Transcriptomics: Apical Resection in Newborn Pigs Extends the Time Window of Cardiomyocyte Proliferation and Myocardial Regeneration.

Circulation. 2022-6-7

[3]
A Novel Allosteric Inhibitor Targets PLK1 in Triple Negative Breast Cancer Cells.

Biomolecules. 2022-3-31

[4]
UALCAN: An update to the integrated cancer data analysis platform.

Neoplasia. 2022-3

[5]
miR-199a Overexpression Enhances the Potency of Human Induced-Pluripotent Stem-Cell-Derived Cardiomyocytes for Myocardial Repair.

Front Pharmacol. 2021-6-3

[6]
Deciphering the performance of polo-like kinase 1 in triple-negative breast cancer progression according to the centromere protein U-phosphorylation pathway.

Am J Cancer Res. 2021-5-15

[7]
Benchmarking network-based gene prioritization methods for cerebral small vessel disease.

Brief Bioinform. 2021-9-2

[8]
WLS-Wnt signaling promotes neuroendocrine prostate cancer.

iScience. 2021-1-1

[9]
Apical Resection Prolongs the Cell Cycle Activity and Promotes Myocardial Regeneration After Left Ventricular Injury in Neonatal Pig.

Circulation. 2020-9

[10]
Disruption of FGF Signaling Ameliorates Inflammatory Response in Hepatic Stellate Cells.

Front Cell Dev Biol. 2020-7-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索