Suppr超能文献

美国分娩住院期间心律失常的时间趋势:来自2009 - 2019年全国住院患者样本的分析

Temporal trends of arrhythmias at delivery hospitalizations in the United States: Analysis from the National Inpatient Sample, 2009-2019.

作者信息

Thakkar Aarti, Kwapong Yaa A, Patel Harsh, Minhas Anum S, Vaught Arthur J, Gavin Nicole, Zakaria Sammy, Blumenthal Roger S, Wu Katherine C, Chrispin Jonathan, Dani Sourbha S, Sharma Garima

机构信息

Division of Cardiology, Department of Medicine, Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, United States.

Department of Cardiology, Southern Illinois University, Springfield, IL, United States.

出版信息

Front Cardiovasc Med. 2022 Nov 3;9:1000298. doi: 10.3389/fcvm.2022.1000298. eCollection 2022.

Abstract

BACKGROUND

Cardiac arrhythmias are associated with increased maternal morbidity. There are limited data on trends of arrhythmias among women hospitalized for delivery.

MATERIALS AND METHODS

We used the National Inpatient Sample (NIS) database to identify delivery hospitalizations for individuals aged 18-49 years between 2009 to 2019 and utilized coding data from the 9th and 10th editions of the to identify supraventricular tachycardias (SVT), atrial fibrillation (AF), atrial flutter, ventricular tachycardia (VT), and ventricular fibrillation (VF). Arrhythmia trends were analyzed by age, race-ethnicity, hospital setting, and hospital geographic regions. Multivariable logistic regression was used to evaluate the association of demographic, clinical, and socioeconomic characteristics with arrhythmias.

RESULTS

Among 41,576,442 delivery hospitalizations, the most common arrhythmia was SVT (53%), followed by AF (31%) and VT (13%). The prevalence of arrhythmia among delivery hospitalizations increased between 2009 and 2019. Age > 35 years and Black race were associated with a higher arrhythmia burden. Factors associated with an increased risk of arrhythmias included valvular disease (OR: 12.77; 95% C1:1.98-13.61), heart failure (OR:7.13; 95% CI: 6.49-7.83), prior myocardial infarction (OR: 5.41, 95% CI: 4.01-7.30), peripheral vascular disease (OR: 3.19, 95% CI: 2.51-4.06), hypertension (OR: 2.18; 95% CI: 2.07-2.28), and obesity (OR 1.69; 95% CI: 1.63-1.76). Delivery hospitalizations complicated by arrhythmias compared with those with no arrhythmias had a higher proportion of all-cause in-hospital mortality (0.95% vs. 0.01%), cardiogenic shock (0.48% vs. 0.00%), preeclampsia (6.96% vs. 3.58%), and preterm labor (2.95% vs. 2.41%) (all < 0.0001).

CONCLUSION

Pregnant individuals with age > 35 years, obesity, hypertension, valvular heart disease, or severe pulmonary disease are more likely to have an arrhythmia history or an arrhythmia during a delivery hospitalization. Delivery hospitalizations with a history of arrhythmia are more likely to be complicated by all-cause in-hospital mortality, cardiovascular, and adverse pregnancy outcomes (APOs). These data highlight the increased risk associated with pregnancies among individuals with arrhythmias.

摘要

背景

心律失常与孕产妇发病率增加相关。关于分娩住院女性心律失常趋势的数据有限。

材料与方法

我们使用国家住院样本(NIS)数据库识别2009年至2019年间年龄在18 - 49岁的分娩住院患者,并利用第九版和第十版国际疾病分类(ICD)的编码数据识别室上性心动过速(SVT)、心房颤动(AF)、心房扑动、室性心动过速(VT)和心室颤动(VF)。通过年龄、种族、医院环境和医院地理区域分析心律失常趋势。采用多变量逻辑回归评估人口统计学、临床和社会经济特征与心律失常的关联。

结果

在41,576,442例分娩住院病例中,最常见的心律失常是室上性心动过速(53%),其次是心房颤动(31%)和室性心动过速(13%)。2009年至2019年间,分娩住院病例中心律失常的患病率有所增加。年龄>35岁和黑人种族与更高的心律失常负担相关。与心律失常风险增加相关的因素包括瓣膜病(比值比:12.77;95%置信区间:1.98 - 13.61)、心力衰竭(比值比:7.13;95%置信区间:6.49 - 7.83)、既往心肌梗死(比值比:5.41,95%置信区间:4.01 - 7.30)、外周血管疾病(比值比:3.19,95%置信区间:2.51 - 4.06)、高血压(比值比:2.18;95%置信区间:2.07 - 2.28)和肥胖(比值比1.69;95%置信区间:1.63 - 1.76)。与无心律失常的分娩住院病例相比,并发心律失常的分娩住院病例全因住院死亡率(0.95%对0.01%)、心源性休克(0.48%对0.00%)、先兆子痫(6.96%对3.58%)和早产(2.95%对2.41%)的比例更高(均P < 0.0001)。

结论

年龄>35岁、肥胖、高血压、瓣膜性心脏病或严重肺部疾病的孕妇在分娩住院期间更有可能有心律失常病史或发生心律失常。有心律失常病史的分娩住院病例更有可能并发全因住院死亡率、心血管疾病和不良妊娠结局(APO)。这些数据突出了心律失常患者妊娠相关风险的增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/9668854/da32b98466c9/fcvm-09-1000298-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验