Suppr超能文献

气候变化决定了对用于保护的抗锈野生小扁豆候选种群的选择。

Climate change conditions the selection of rust-resistant candidate wild lentil populations for conservation.

作者信息

Civantos-Gómez Iciar, Rubio Teso María Luisa, Galeano Javier, Rubiales Diego, Iriondo José María, García-Algarra Javier

机构信息

Complex System Group, Universidad Politécnica de Madrid, Madrid, Spain.

Faculty of Economics and Business Administration, Universidad Pontificia Comillas, Madrid, Spain.

出版信息

Front Plant Sci. 2022 Nov 3;13:1010799. doi: 10.3389/fpls.2022.1010799. eCollection 2022.

Abstract

Crop Wild Relatives (CWR) are a valuable source of genetic diversity that can be transferred to commercial crops, so their conservation will become a priority in the face of climate change. Bizarrely, conserved CWR populations and the traits one might wish to preserve in them are themselves vulnerable to climate change. In this study, we used a quantitative machine learning predictive approach to project the resistance of CWR populations of lentils to a common disease, lentil rust, caused by fungus . Resistance is measured through a proxy quantitative value, DSr (Disease Severity relative), quite complex and expensive to get. Therefore, machine learning is a convenient tool to predict this magnitude using a well-curated georeferenced calibration set. Previous works have provided a binary outcome (resistant non-resistant), but that approach is not fine enough to answer three practical questions: which variables are key to predict rust resistance, which CWR populations are resistant to rust under current environmental conditions, and which of them are likely to keep this trait under different climate change scenarios. We first predict rust resistance in present time for crop wild relatives that grow up inside protected areas. Then, we use the same models under future climate IPCC (Intergovernmental Panel on Climate Change) scenarios to predict future DSr values. Populations that are rust-resistant by now and under future conditions are optimal candidates for further evaluation and conservation of this valuable trait. We have found that rust-resistance variation as a result of climate change is not uniform across the geographic scope of the study (the Mediterranean basin), and that candidate populations share some interesting common environmental conditions.

摘要

作物野生近缘种(CWR)是一种宝贵的遗传多样性来源,可以转移到商业作物中,因此面对气候变化,对它们的保护将成为优先事项。奇怪的是,已保护的CWR种群以及人们可能希望在其中保存的性状本身也容易受到气候变化的影响。在本研究中,我们使用定量机器学习预测方法来预测小扁豆的CWR种群对由真菌引起的常见病害——小扁豆锈病的抗性。抗性是通过一个代理定量值DSr(相对病害严重度)来衡量的,获取该值相当复杂且昂贵。因此,机器学习是使用精心策划的地理参考校准集来预测这一指标的便捷工具。先前的研究给出了二元结果(抗性/非抗性),但这种方法不够精细,无法回答三个实际问题:哪些变量是预测锈病抗性的关键,哪些CWR种群在当前环境条件下对锈病具有抗性,以及在不同气候变化情景下哪些种群可能保持这一性状。我们首先预测了目前生长在保护区内的作物野生近缘种的锈病抗性。然后,我们在未来气候IPCC(政府间气候变化专门委员会)情景下使用相同模型来预测未来的DSr值。目前和未来条件下都具有锈病抗性的种群是进一步评估和保护这一宝贵性状的最佳候选对象。我们发现,气候变化导致的锈病抗性变化在研究的地理范围内(地中海盆地)并不均匀,并且候选种群共享一些有趣的共同环境条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5d/9669080/f8461a31ed4e/fpls-13-1010799-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验