Darko Adjei Peter, Liang Decui, Xu Zeshui, Agbodah Kobina, Obiora Sandra
School of Management and Economics, University of Electronic Science and Technology of China, Chengdu 610054, China.
Business School, Sichuan University, Chengdu, Sichuan 610065, China.
Expert Syst Appl. 2023 Mar 1;213:119262. doi: 10.1016/j.eswa.2022.119262. Epub 2022 Nov 14.
The onset of the COVID-19 pandemic has changed consumer usage behavior towards mobile payment (m-payment) services. Consumer usage behavior towards m-payment services continues to increase due to access to usage experiences shared through online consumer reviews (OCRs). The proliferation of massive OCRs, coupled with quick and effective decisions concerning the evaluation and selection of m-payment services, is a practical issue for research. This paper develops a novel decision evaluation model that integrates OCRs and multi-attribute decision-making (MADM) with probabilistic linguistic information to identify m-payment usage attributes and utilize these attributes to evaluate and rank m-payment services. First and foremost, the attributes of m-payment usage discussed by consumers in OCRs are extracted using the Latent Dirichlet Allocation (LDA) topic modeling approach. These key attributes are used as the evaluation scales in the MADM. Based on an unsupervised sentiment algorithm, the sentiment scores of the text reviews regarding the attributes are calculated. We convert the sentiment scores into probabilistic linguistic elements based on the probabilistic linguistic term set (PLTS) theory and statistical analysis. Furthermore, we construct a novel technique known as probabilistic linguistic indifference threshold-based attribute ratio analysis (PL-ITARA) to discover the weight importance of the usage attributes. Subsequently, the positive and negative ideal-based PL-ELECTRE I methodology is proposed to evaluate and rank m-payment services. Finally, a case study on selecting appropriate m-payment services in Ghana is examined to authenticate the validity and applicability of our proposed decision evaluation methodology.
新冠疫情的爆发改变了消费者对移动支付服务的使用行为。由于能够获取通过在线消费者评论(OCR)分享的使用体验,消费者对移动支付服务的使用行为持续增加。大量OCR的激增,以及有关移动支付服务评估和选择的快速有效决策,是一个值得研究的实际问题。本文开发了一种新颖的决策评估模型,该模型将OCR与多属性决策(MADM)相结合,并利用概率语言信息来识别移动支付使用属性,并利用这些属性对移动支付服务进行评估和排名。首先,使用潜在狄利克雷分配(LDA)主题建模方法提取消费者在OCR中讨论的移动支付使用属性。这些关键属性被用作MADM中的评估尺度。基于无监督情感算法,计算文本评论中关于这些属性的情感得分。我们根据概率语言术语集(PLTS)理论和统计分析将情感得分转换为概率语言元素。此外,我们构建了一种名为基于概率语言无差异阈值的属性比率分析(PL-ITARA)的新技术,以发现使用属性的权重重要性。随后,提出了基于正理想和负理想的PL-ELECTRE I方法来评估移动支付服务并对其进行排名。最后,通过对加纳选择合适移动支付服务的案例研究,验证了我们提出的决策评估方法的有效性和适用性。