Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
EMBO Rep. 2022 Dec 6;23(12):e55420. doi: 10.15252/embr.202255420. Epub 2022 Nov 21.
The cilium evolved to provide the ancestral eukaryote with the ability to move and sense its environment. Acquiring these functions required the compartmentalization of a dynein-based motility apparatus and signaling proteins within a discrete subcellular organelle contiguous with the cytosol. Here, we explore the potential molecular mechanisms for how the proximal-most region of the cilium, termed transition zone (TZ), acts as a diffusion barrier for both membrane and soluble proteins and helps to ensure ciliary autonomy and homeostasis. These include a unique complement and spatial organization of proteins that span from the microtubule-based axoneme to the ciliary membrane; a protein picket fence; a specialized lipid microdomain; differential membrane curvature and thickness; and lastly, a size-selective molecular sieve. In addition, the TZ must be permissive for, and functionally integrates with, ciliary trafficking systems (including intraflagellar transport) that cross the barrier and make the ciliary compartment dynamic. The quest to understand the TZ continues and promises to not only illuminate essential aspects of human cell signaling, physiology, and development, but also to unravel how TZ dysfunction contributes to ciliopathies that affect multiple organ systems, including eyes, kidney, and brain.
纤毛的进化使原始真核生物获得了运动和感知环境的能力。要获得这些功能,需要将基于动力蛋白的运动装置和信号蛋白分隔在与细胞质连续的离散亚细胞细胞器中。在这里,我们探讨了纤毛的最近端区域(称为过渡区,transition zone,简称 TZ)如何作为膜和可溶性蛋白的扩散屏障,并有助于确保纤毛的自主性和动态平衡的潜在分子机制。这些机制包括从基于微管的轴丝延伸到纤毛膜的独特蛋白成分和空间组织;蛋白栅栏;特殊的脂质微区;不同的膜曲率和厚度;最后是尺寸选择性的分子筛。此外,TZ 必须允许并与穿过该屏障的纤毛运输系统(包括鞭毛内运输)相兼容,从而使纤毛隔室保持动态。对 TZ 的研究仍在继续,并有望不仅阐明人类细胞信号转导、生理学和发育的重要方面,还能揭示 TZ 功能障碍如何导致影响多个器官系统(包括眼睛、肾脏和大脑)的纤毛病。