Suppr超能文献

聚合物-陶瓷复合电解质具有增强的电化学性能。

Ceramic-in-Polymer Hybrid Electrolytes with Enhanced Electrochemical Performance.

机构信息

Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstreet 46, 48149Münster, Germany.

Institute for Combustion and Gas Dynamics─Reactive Fluids, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057Duisburg, Germany.

出版信息

ACS Appl Mater Interfaces. 2022 Dec 7;14(48):53636-53647. doi: 10.1021/acsami.2c13408. Epub 2022 Nov 21.

Abstract

Polymer electrolytes are attractive candidates to boost the application of rechargeable lithium metal batteries. Single-ion conducting polymers may reduce polarization and lithium dendrite growth, though these materials could be mechanically overly rigid, thus requiring ion mobilizers such as organic solvents to foster transport of Li ions. An inhomogeneous mobilizer distribution and occurrence of preferential Li transport pathways eventually yield favored spots for Li plating, thereby imposing additional mechanical stress and even premature cell short circuits. In this work, we explored ceramic-in-polymer hybrid electrolytes consisting of polymer blends of single-ion conducting polymer and PVdF-HFP, including EC/PC as swelling agents and silane-functionalized LATP particles. The hybrid electrolyte features an oxide-rich layer that notably stabilizes the interphase toward Li metal, enabling single-side lithium deposition for over 700 h at a current density of 0.1 mA cm. The incorporated oxide particles significantly reduce the natural solvent uptake from 140 to 38 wt % despite maintaining reasonably high ionic conductivities. Its electrochemical performance was evaluated in LiNiCoMnO (NMC622)||Li metal cells, exhibiting impressive capacity retention over 300 cycles. Notably, very thin LiNbO coating of the cathode material further boosts the cycling stability, resulting in an overall capacity retention of 78% over more than 600 cycles, clearly highlighting the potential of hybrid electrolyte concepts.

摘要

聚合物电解质是提高可充电锂金属电池应用的有吸引力的候选材料。单离子导电聚合物可以减少极化和锂枝晶生长,尽管这些材料可能在机械上过于刚性,因此需要离子增塑剂(如有机溶剂)来促进锂离子的传输。不均匀的增塑剂分布和优先的锂离子传输途径的出现最终导致了锂电镀的有利位置,从而施加了额外的机械应力,甚至导致电池过早短路。在这项工作中,我们探索了由单离子导电聚合物和 PVdF-HFP 的聚合物共混物组成的陶瓷-聚合物混合电解质,包括 EC/PC 作为溶胀剂和硅烷功能化 LATP 颗粒。混合电解质具有富氧化物层,显著稳定了与锂金属的界面,能够在 0.1 mA cm 的电流密度下进行超过 700 小时的单侧锂沉积。尽管保持了相当高的离子电导率,但掺入的氧化物颗粒将天然溶剂的吸收量从 140 重量%显著降低至 38 重量%。其电化学性能在 LiNiCoMnO (NMC622)||Li 金属电池中进行了评估,在 300 次循环后表现出令人印象深刻的容量保持率。值得注意的是,阴极材料的 LiNbO 超薄涂层进一步提高了循环稳定性,在超过 600 次循环后总容量保持率达到 78%,这清楚地突出了混合电解质概念的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a414/9743088/837642b693b5/am2c13408_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验