School of Materials Science and Engineering, State Key Laboratory of Automotive Simulation and Control, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China.
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
Adv Mater. 2023 Feb;35(6):e2209141. doi: 10.1002/adma.202209141. Epub 2022 Dec 18.
Designing heterojunction photocatalysts imitating natural photosynthetic systems has been a promising approach for photocatalytic hydrogen generation. However, in the traditional Z-Scheme artificial photosynthetic systems, the poor charge separation, and rapid recombination of photogenerated carriers remain a huge bottleneck. To rationally design S-Scheme (i.e., Step scheme) heterojunctions by avoiding the futile charge transport routes is therefore seen as an attractive approach to achieving high hydrogen evolution rates. Herein, a twin S-scheme heterojunction is proposed involving graphitic C N nanosheets self-assembled with hydrogen-doped rutile TiO nanorods and anatase TiO nanoparticles. This catalyst shows an excellent photocatalytic hydrogen evolution rate of 62.37 mmol g h and high apparent quantum efficiency of 45.9% at 365 nm. The significant enhancement of photocatalytic performance is attributed to the efficient charge separation and transfer induced by the unique twin S-scheme structure. The charge transfer route in the twin S-scheme is confirmed by in situ X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) spin-trapping tests. Femtosecond transient absorption (fs-TA) spectroscopy, transient-state surface photovoltage (TPV), and other ex situ characterizations further corroborate the efficient charge transport across the catalyst interface. This work offers a new perspective on constructing artificial photosynthetic systems with S-scheme heterojunctions to enhance photocatalytic performance.
设计模拟自然光合作用系统的异质结光催化剂是光催化制氢的一种很有前途的方法。然而,在传统的 Z 型人工光合系统中,光生载流子的电荷分离和快速复合仍然是一个巨大的瓶颈。因此,通过避免无效的电荷传输途径来合理设计 S 型(即阶梯型)异质结被认为是实现高制氢速率的一种有吸引力的方法。本文提出了一种涉及石墨 C3N4纳米片自组装的孪 S 型异质结,该纳米片与掺氢锐钛矿 TiO2纳米棒和金红石 TiO2纳米颗粒结合。该催化剂在 365nm 下表现出优异的光催化制氢速率为 62.37mmol g h 和高达 45.9%的表观量子效率。光催化性能的显著提高归因于独特的孪 S 型结构诱导的高效电荷分离和转移。通过原位 X 射线光电子能谱(XPS)和电子顺磁共振(ESR)自旋捕获测试证实了电荷转移路径。飞秒瞬态吸收(fs-TA)光谱、瞬态表面光电压(TPV)和其他原位表征进一步证实了催化剂界面上的有效电荷传输。这项工作为构建具有 S 型异质结的人工光合系统以提高光催化性能提供了新的视角。