文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在大鼠中进行 co-spray-dried 可吸入吡非尼酮微球的药代动力学和药效学研究。

pharmacokinetic and pharmacodynamic study of co-spray-dried inhalable pirfenidone microparticles in rats.

机构信息

College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea.

College of Pharmacy, Wonkwang University, Iksan, Republic of Korea.

出版信息

Drug Deliv. 2022 Dec;29(1):3384-3396. doi: 10.1080/10717544.2022.2149899.


DOI:10.1080/10717544.2022.2149899
PMID:36415157
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9704105/
Abstract

Pirfenidone (PRF) is the first FDA-approved API in the treatment of idiopathic pulmonary fibrosis (IPF). However, PRF induces serious side effects, such as photophobia and gastrointestinal disorder. PRF inhalation can be expected with a lower effective dose and reduced side effects. In this study, PRF was prepared as inhalable co-spray-dried particles for dry powder inhalation. Mannitol, L-leucine (Leu), and NaCl were used as a stabilizer. The kinds and ratios of stabilizers affecting the physicochemical properties of particles were analyzed, including particle size and surface composition, because of the surface enrichment properties of Leu, the most effective stabilizer. The co-spray-dried PRF and Leu microparticle (SD-PL1:1) have the smallest size and highest aerosol performance. The bioavailability was confirmed by pharmacokinetics (PK) studies. In addition, pharmacodynamics (PD) experiments were conducted using a bleomycin-induced IPF rat model. PK experiments demonstrated that pulmonary administration of SD-PL1:1 was 4 times more effective than the oral route. Similar to the PK results, the therapeutic effect was improved when SD-PL1:1 was administered via the pulmonary route compared to the oral route.

摘要

吡非尼酮(PRF)是美国食品药品监督管理局(FDA)批准用于治疗特发性肺纤维化(IPF)的首个 API。然而,PRF 会引起严重的副作用,如畏光和胃肠道紊乱。PRF 吸入剂有望以较低的有效剂量和减少副作用。在这项研究中,PRF 被制备成可吸入的共喷雾干燥颗粒用于干粉吸入。甘露醇、L-亮氨酸(Leu)和 NaCl 被用作稳定剂。分析了影响颗粒理化性质的稳定剂的种类和比例,包括粒径和表面组成,因为 Leu 具有表面富集特性,是最有效的稳定剂。共喷雾干燥的 PRF 和 Leu 微球(SD-PL1:1)具有最小的粒径和最高的气溶胶性能。通过药代动力学(PK)研究证实了生物利用度。此外,还使用博来霉素诱导的 IPF 大鼠模型进行了药效学(PD)实验。PK 实验表明,SD-PL1:1 经肺部给药的效果是口服途径的 4 倍。与 PK 结果相似,与口服途径相比,SD-PL1:1 经肺部给药时的治疗效果得到了改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e6/9704105/96e659d83a32/IDRD_A_2149899_F0008_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e6/9704105/a364ea7af774/IDRD_A_2149899_F0001_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e6/9704105/910295f8ad24/IDRD_A_2149899_F0002_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e6/9704105/2d3c0304cc1a/IDRD_A_2149899_F0003_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e6/9704105/655037bb3fb2/IDRD_A_2149899_F0004_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e6/9704105/ccacd8424382/IDRD_A_2149899_F0005_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e6/9704105/1cadf418671c/IDRD_A_2149899_F0006_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e6/9704105/1f2c5c1ed050/IDRD_A_2149899_F0007_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e6/9704105/96e659d83a32/IDRD_A_2149899_F0008_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e6/9704105/a364ea7af774/IDRD_A_2149899_F0001_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e6/9704105/910295f8ad24/IDRD_A_2149899_F0002_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e6/9704105/2d3c0304cc1a/IDRD_A_2149899_F0003_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e6/9704105/655037bb3fb2/IDRD_A_2149899_F0004_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e6/9704105/ccacd8424382/IDRD_A_2149899_F0005_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e6/9704105/1cadf418671c/IDRD_A_2149899_F0006_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e6/9704105/1f2c5c1ed050/IDRD_A_2149899_F0007_B.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49e6/9704105/96e659d83a32/IDRD_A_2149899_F0008_C.jpg

相似文献

[1]
pharmacokinetic and pharmacodynamic study of co-spray-dried inhalable pirfenidone microparticles in rats.

Drug Deliv. 2022-12

[2]
Inhaled deep eutectic solvent based-nanoemulsion of pirfenidone in idiopathic pulmonary fibrosis.

J Control Release. 2022-12

[3]
Development of an Improved Inhalable Powder Formulation of Pirfenidone by Spray-Drying: In Vitro Characterization and Pharmacokinetic Profiling.

Pharm Res. 2016-6

[4]
Effect of Lipidic Excipients on the Particle Properties and Aerosol Performance of High Drug Load Spray Dried Particles for Inhalation.

J Pharm Sci. 2022-4

[5]
Design and evaluation of novel inhalable sildenafil citrate spray-dried microparticles for pulmonary arterial hypertension.

J Control Release. 2019-3-30

[6]
Influence of excipients on physical and aerosolization stability of spray dried high-dose powder formulations for inhalation.

Int J Pharm. 2018-4-18

[7]
Development of excipients free inhalable co-spray-dried tobramycin and diclofenac formulations for cystic fibrosis using two and three fluid nozzles.

Int J Pharm. 2022-8-25

[8]
Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols.

Int J Pharm. 2013-6-29

[9]
Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery.

Drug Des Devel Ther. 2013-8-28

[10]
Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols.

Int J Nanomedicine. 2013-1-15

引用本文的文献

[1]
Development of Novel Fluticasone/Salmeterol/Tiotropium-Loaded Dry Powder Inhaler and Bioequivalence Assessment to Commercial Products in Rats.

Pharmaceutics. 2025-1-14

[2]
Novel inhalation therapy in pulmonary fibrosis: principles, applications and prospects.

J Nanobiotechnology. 2024-3-29

本文引用的文献

[1]
Effects of L-leucine on the properties of spray-dried swellable microparticles with wrinkled surfaces for inhalation therapy of pulmonary fibrosis.

Int J Pharm. 2021-12-15

[2]
Co-Spray Dried Nafamostat Mesylate with Lecithin and Mannitol as Respirable Microparticles for Targeted Pulmonary Delivery: Pharmacokinetics and Lung Distribution in Rats.

Pharmaceutics. 2021-9-19

[3]
Evaluation of the long-term effect of polyhexamethylene guanidine phosphate in a rat lung model using conventional chest computed tomography with histopathologic analysis.

PLoS One. 2021

[4]
Leucine as an excipient in spray dried powder for inhalation.

Drug Discov Today. 2021-10

[5]
Butyrate Improves Skin/Lung Fibrosis and Intestinal Dysbiosis in Bleomycin-Induced Mouse Models.

Int J Mol Sci. 2021-3-9

[6]
A critical review of spray-dried amorphous pharmaceuticals: Synthesis, analysis and application.

Int J Pharm. 2021-2-1

[7]
Inhaled bosentan microparticles for the treatment of monocrotaline-induced pulmonary arterial hypertension in rats.

J Control Release. 2021-1-10

[8]
The Effect of Particle Size and Surface Roughness of Spray-Dried Bosentan Microparticles on Aerodynamic Performance for Dry Powder Inhalation.

Pharmaceutics. 2020-8-13

[9]
Imaging Biomarkers and Pathobiological Profiling in a Rat Model of Drug-Induced Interstitial Lung Disease Induced by Bleomycin.

Front Physiol. 2020-6-19

[10]
Caveolin-1-derived peptide limits development of pulmonary fibrosis.

Sci Transl Med. 2019-12-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索