Suppr超能文献

大肠杆菌中的多药外排调节蛋白 AcrR 对外源和内源性配体作出响应,以调节外排和解毒作用。

The Multidrug Efflux Regulator AcrR of Escherichia coli Responds to Exogenous and Endogenous Ligands To Regulate Efflux and Detoxification.

机构信息

Department of Biology, California State University Northridge, Northridge, California, USA.

出版信息

mSphere. 2022 Dec 21;7(6):e0047422. doi: 10.1128/msphere.00474-22. Epub 2022 Nov 23.

Abstract

The transcriptional repressor AcrR is the main regulator of the multidrug efflux pump AcrAB-TolC, which plays a major role in antibiotic resistance and cell physiology in Escherichia coli and other . However, it remains unknown which ligands control the function of AcrR. To address this gap in knowledge, this study tested whether exogenous and/or endogenous molecules identified as potential AcrR ligands regulate the activity of AcrR. Using electrophoretic mobility shift assays (EMSAs) with purified AcrR and the promoter and gene expression experiments, we found that AcrR responds to both exogenous molecules and cellular metabolites produced by E. coli. In total, we identified four functional ligands of AcrR, ethidium bromide (EtBr), an exogenous antimicrobial known to be effluxed by the AcrAB-TolC pump and previously shown to bind to AcrR, and three polyamines produced by E. coli, namely, putrescine, cadaverine, and spermidine. We found that EtBr and polyamines bind to AcrR both and , which prevents the binding of AcrR to the promoter and, ultimately, induces the expression of . Finally, we also found that AcrR contributes to mitigating the toxicity produced by excess polyamines by directly regulating the expression of AcrAB-TolC and two previously unknown AcrR targets, the MdtJI spermidine efflux pump and the putrescine degradation enzyme PuuA. Overall, these findings significantly expand our understanding of the function of AcrR by revealing that this regulator responds to different exogenous and endogenous ligands to regulate the expression of multiple genes involved in efflux and detoxification. Multidrug efflux pumps can remove antibiotics and other toxic molecules from cells and are major contributors to antibiotic resistance and bacterial physiology. Therefore, it is essential to better understand their function and regulation. AcrAB-TolC is the main multidrug efflux pump in the family, and AcrR is its major transcriptional regulator. However, little is known about which ligands control the function of AcrR or which other genes are controlled by this regulator. This study contributes to addressing these gaps in knowledge by showing that (i) the activity of AcrR is controlled by the antimicrobial ethidium bromide and by polyamines produced by E. coli, and (ii) AcrR directly regulates the expression of AcrAB-TolC and genes involved in detoxification and efflux of excess polyamines. These findings significantly advance our understanding of the biological role of AcrR by identifying four ligands that control its function and two novel targets of this regulator.

摘要

转录抑制剂 AcrR 是多药外排泵 AcrAB-TolC 的主要调节剂,在大肠杆菌和其他 中,它在抗生素耐药性和细胞生理学中起着重要作用。然而,目前尚不清楚哪些配体控制 AcrR 的功能。为了填补这一知识空白,本研究检测了是否有鉴定为潜在 AcrR 配体的外源和/或内源性分子调节 AcrR 的活性。通过使用纯化的 AcrR 与 启动子和 基因表达实验进行电泳迁移率变动分析(EMSA),我们发现 AcrR 对外源分子和大肠杆菌产生的细胞代谢物均有反应。总的来说,我们鉴定了 AcrR 的四个功能配体,即溴化乙锭(EtBr)、一种已知被 AcrAB-TolC 泵外排的外源性抗菌剂,先前已显示与 AcrR 结合,以及由大肠杆菌产生的三种聚胺,即腐胺、尸胺和亚精胺。我们发现 EtBr 和聚胺都与 AcrR 结合 和 ,这阻止了 AcrR 与 启动子结合,最终诱导 的表达。最后,我们还发现 AcrR 通过直接调节 AcrAB-TolC 和两个先前未知的 AcrR 靶标,MdtJI 亚精胺外排泵和腐胺降解酶 PuuA 的表达,有助于减轻过量聚胺产生的毒性。总的来说,这些发现通过揭示该调节剂对外源和内源性配体的不同反应来调节参与外排和解毒的多个基因的表达,从而大大扩展了我们对 AcrR 功能的理解。多药外排泵可以将抗生素和其他有毒分子从细胞中排出,是抗生素耐药性和细菌生理学的主要贡献者。因此,了解它们的功能和调节至关重要。AcrAB-TolC 是 家族中的主要多药外排泵,AcrR 是其主要的转录调节剂。然而,目前尚不清楚哪些配体控制 AcrR 的功能,也不清楚该调节剂还控制哪些其他基因。本研究通过显示(i)AcrR 的活性受抗菌溴化乙锭和大肠杆菌产生的聚胺控制,以及(ii)AcrR 直接调节 AcrAB-TolC 和参与解毒和排出过量聚胺的外排基因的表达,为填补这些知识空白做出了贡献。这些发现通过鉴定控制其功能的四种配体和该调节剂的两个新靶标,极大地推进了我们对 AcrR 生物学作用的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acc6/9769551/9275acc68612/msphere.00474-22-f001.jpg

相似文献

2
The multidrug efflux pump regulator AcrR directly represses motility in .
mSphere. 2023 Oct 24;8(5):e0043023. doi: 10.1128/msphere.00430-23. Epub 2023 Oct 3.
4
Regulation of acrAB expression by cellular metabolites in Escherichia coli.
J Antimicrob Chemother. 2014 Feb;69(2):390-9. doi: 10.1093/jac/dkt352. Epub 2013 Sep 15.
5
Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli.
Antimicrob Agents Chemother. 2014 Dec;58(12):7250-7. doi: 10.1128/AAC.03728-14. Epub 2014 Sep 22.
6
Fitness trade-offs of multidrug efflux pumps in K-12 in acid or base, and with aromatic phytochemicals.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0209623. doi: 10.1128/aem.02096-23. Epub 2024 Jan 30.
8
Local Regulator AcrR Regulates Persister Formation by Repression of AcrAB Efflux Pump during Exponential Growth in Aeromonas veronii.
Antimicrob Agents Chemother. 2023 Mar 16;67(3):e0096922. doi: 10.1128/aac.00969-22. Epub 2023 Feb 28.
10
Sodium Malonate Inhibits the AcrAB-TolC Multidrug Efflux Pump of and Increases Antibiotic Efficacy.
Pathogens. 2022 Nov 24;11(12):1409. doi: 10.3390/pathogens11121409.

引用本文的文献

1
A novel mutation of involved in tigecycline resistance in .
Microbiol Spectr. 2025 Jun 3;13(6):e0320424. doi: 10.1128/spectrum.03204-24. Epub 2025 May 15.
2
Disruption of the EmrAB-TolC efflux pump of induces global metabolic changes in multiple growth conditions.
MicroPubl Biol. 2025 Mar 21;2025. doi: 10.17912/micropub.biology.001437. eCollection 2025.
9
The multidrug efflux pump regulator AcrR directly represses motility in .
mSphere. 2023 Oct 24;8(5):e0043023. doi: 10.1128/msphere.00430-23. Epub 2023 Oct 3.

本文引用的文献

1
A genetic platform to investigate the functions of bacterial drug efflux pumps.
Nat Chem Biol. 2022 Dec;18(12):1399-1409. doi: 10.1038/s41589-022-01119-y. Epub 2022 Sep 5.
5
Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer.
Science. 2019 May 24;364(6442):778-782. doi: 10.1126/science.aav6390.
6
Global effect of the AcrAB-TolC multidrug efflux pump of Escherichia coli in cell metabolism revealed by untargeted metabolomics.
Int J Antimicrob Agents. 2019 Jul;54(1):105-107. doi: 10.1016/j.ijantimicag.2019.05.015. Epub 2019 May 17.
7
Multidrug efflux pumps: structure, function and regulation.
Nat Rev Microbiol. 2018 Sep;16(9):523-539. doi: 10.1038/s41579-018-0048-6.
8
Potential Swimming Motility Variation by AcrR in .
J Microbiol Biotechnol. 2016 Oct 28;26(10):1824-1828. doi: 10.4014/jmb.1607.07058.
9
Catabolism of Amino Acids and Related Compounds.
EcoSal Plus. 2005 Nov;1(2). doi: 10.1128/ecosalplus.3.4.7.
10
Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell.
J Mol Biol. 2015 Oct 23;427(21):3389-406. doi: 10.1016/j.jmb.2015.06.020. Epub 2015 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验