Suppr超能文献

基于 Q 学习的智能空气质量监测系统飞地网络路由方案。

A Q-learning-based routing scheme for smart air quality monitoring system using flying ad hoc networks.

机构信息

Department of Computer Science and Mathematics, Faculty of Economic Studies, University of Finance and Administration, Prague, Czech Republic.

Future Technology Research Center, National Yunlin University of Science and Technology, Yunlin, Taiwan.

出版信息

Sci Rep. 2022 Nov 23;12(1):20184. doi: 10.1038/s41598-022-20353-x.

Abstract

Air pollution has changed ecosystem and atmosphere. It is dangerous for environment, human health, and other living creatures. This contamination is due to various industrial and chemical pollutants, which reduce air, water, and soil quality. Therefore, air quality monitoring is essential. Flying ad hoc networks (FANETs) are an effective solution for intelligent air quality monitoring and evaluation. A FANET-based air quality monitoring system uses unmanned aerial vehicles (UAVs) to measure air pollutants. Therefore, these systems have particular features, such as the movement of UAVs in three-dimensional area, high dynamism, quick topological changes, constrained resources, and low density of UAVs in the network. Therefore, the routing issue is a fundamental challenge in these systems. In this paper, we introduce a Q-learning-based routing method called QFAN for intelligent air quality monitoring systems. The proposed method consists of two parts: route discovery and route maintenance. In the part one, a Q-learning-based route discovery mechanism is designed. Also, we propose a filtering parameter to filter some UAVs in the network and restrict the search space. In the route maintenance phase, QFAN seeks to detect and correct the paths near to breakdown. Moreover, QFAN can quickly identify and replace the failed paths. Finally, QFAN is simulated using NS2 to assess its performance. The simulation results show that QFAN surpasses other routing approaches with regard to end-to-end delay, packet delivery ratio, energy consumption, and network lifetime. However, communication overhead has been increased slightly in QFAN.

摘要

空气污染改变了生态系统和大气。它对环境、人类健康和其他生物都是危险的。这种污染是由于各种工业和化学污染物造成的,这些污染物降低了空气、水和土壤的质量。因此,空气质量监测是必不可少的。飞行 ad hoc 网络 (FANET) 是智能空气质量监测和评估的有效解决方案。基于 FANET 的空气质量监测系统使用无人机 (UAV) 来测量空气污染物。因此,这些系统具有一些特殊的特点,例如无人机在三维区域的移动、高动态性、快速拓扑变化、资源受限以及网络中无人机的密度低。因此,路由问题是这些系统中的一个基本挑战。在本文中,我们介绍了一种基于 Q-learning 的路由方法,称为 QFAN,用于智能空气质量监测系统。该方法由两部分组成:路由发现和路由维护。在第一部分中,设计了一种基于 Q-learning 的路由发现机制。此外,我们提出了一个过滤参数来过滤网络中的一些无人机,并限制搜索空间。在路由维护阶段,QFAN 试图检测和纠正接近故障的路径。此外,QFAN 可以快速识别和替换故障路径。最后,使用 NS2 对 QFAN 进行了模拟,以评估其性能。仿真结果表明,QFAN 在端到端延迟、分组投递率、能量消耗和网络寿命方面优于其他路由方法。然而,QFAN 中的通信开销略有增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e222/9684214/854cb7b22022/41598_2022_20353_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验