School of Science and Engineering, University of Missouri, Kansas City, MO 64110, USA.
Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
Sensors (Basel). 2022 Nov 8;22(22):8614. doi: 10.3390/s22228614.
Fifth-generation (5G) wireless technology promises to be the critical enabler of use cases far beyond smartphones and other connected devices. This next-generation 5G wireless standard represents the changing face of connectivity by enabling elevated levels of automation through continuous optimization of several Key Performance Indicators (KPIs) such as latency, reliability, connection density, and energy efficiency. Mobile Network Operators (MNOs) must promote and implement innovative technologies and solutions to reduce network energy consumption while delivering high-speed and low-latency services to deploy energy-efficient 5G networks with a reduced carbon footprint. This research evaluates an energy-saving method using data-driven learning through load estimation for Beyond 5G (B5G) networks. The proposed 'ECO6G' model utilizes a supervised Machine Learning (ML) approach for forecasting traffic load and uses the estimated load to evaluate the energy efficiency and OPEX savings. The simulation results demonstrate a comparative analysis between the traditional time-series forecasting methods and the proposed ML model that utilizes learned parameters. Our ECO6G dataset is captured from measurements on a real-world operational 5G base station (BS). We showcase simulations using our ECO6G model for a given dataset and demonstrate that the proposed ECO6G model is accurate within $4.3 million over 100,000 BSs over 5 years compared to three other models that would increase OPEX cost from $370 million to $1.87 billion during varying network load scenarios against other data-driven and statistical learning models.
第五代(5G)无线技术有望成为智能手机和其他连接设备以外的用例的关键推动者。这种下一代 5G 无线标准通过持续优化几个关键性能指标(KPI),如延迟、可靠性、连接密度和能源效率,实现了更高水平的自动化,从而改变了连接的面貌。移动网络运营商(MNO)必须推广和实施创新技术和解决方案,以降低网络能源消耗,同时向部署具有降低碳足迹的高能效 5G 网络提供高速和低延迟服务。本研究通过使用数据驱动学习进行负载估计,评估了一种用于 Beyond 5G(B5G)网络的节能方法。所提出的“ECO6G”模型使用监督机器学习(ML)方法进行流量负载预测,并使用估计的负载来评估能源效率和 OPEX 节省。仿真结果展示了传统时间序列预测方法和利用学习参数的所提出 ML 模型之间的比较分析。我们的 ECO6G 数据集是从实际 5G 基站(BS)的测量中捕获的。我们展示了使用我们的 ECO6G 模型进行给定数据集的模拟,并表明与其他三种模型相比,所提出的 ECO6G 模型在 100,000 个 BS 上 5 年内的准确性在 430 万美元以内,而在不同的网络负载情况下,其他三种模型会将 OPEX 成本从 3.7 亿美元增加到 18.7 亿美元,与其他数据驱动和统计学习模型相比。