Suppr超能文献

SGGformer:用于交通预测的移位图卷积图变换器

SGGformer: Shifted Graph Convolutional Graph-Transformer for Traffic Prediction.

作者信息

Pu Shilin, Chu Liang, Hu Jincheng, Li Shibo, Li Jihao, Sun Wen

机构信息

College of Automotive Engineering, Jilin University, Changchun 130022, China.

Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU, UK.

出版信息

Sensors (Basel). 2022 Nov 21;22(22):9024. doi: 10.3390/s22229024.

Abstract

Accurate traffic prediction is significant in intelligent cities' safe and stable development. However, due to the complex spatiotemporal correlation of traffic flow data, establishing an accurate traffic prediction model is still challenging. Aiming to meet the challenge, this paper proposes SGGformer, an advanced traffic grade prediction model which combines a shifted window operation, a multi-channel graph convolution network, and a graph Transformer network. Firstly, the shifted window operation is used for coarsening the time series data, thus, the computational complexity can be reduced. Then, a multi-channel graph convolutional network is adopted to capture and aggregate the spatial correlations of the roads in multiple dimensions. Finally, the improved graph Transformer based on the advanced Transformer model is proposed to extract the long-term temporal correlation of traffic data effectively. The prediction performance is evaluated by using actual traffic datasets, and the test results show that the SGGformer proposed exceeds the state-of-the-art baseline.

摘要

准确的交通预测对智慧城市的安全稳定发展具有重要意义。然而,由于交通流数据复杂的时空相关性,建立准确的交通预测模型仍然具有挑战性。为应对这一挑战,本文提出了SGGformer,一种先进的交通等级预测模型,它结合了移位窗口操作、多通道图卷积网络和图Transformer网络。首先,移位窗口操作用于对时间序列数据进行粗化,从而降低计算复杂度。然后,采用多通道图卷积网络在多个维度上捕捉和聚合道路的空间相关性。最后,提出了基于先进Transformer模型的改进图Transformer,以有效提取交通数据的长期时间相关性。使用实际交通数据集对预测性能进行评估,测试结果表明,所提出的SGGformer超过了现有最先进的基线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e04/9698654/f59243f5d24e/sensors-22-09024-g001.jpg

相似文献

1
SGGformer: Shifted Graph Convolutional Graph-Transformer for Traffic Prediction.
Sensors (Basel). 2022 Nov 21;22(22):9024. doi: 10.3390/s22229024.
2
MD-GCN: A Multi-Scale Temporal Dual Graph Convolution Network for Traffic Flow Prediction.
Sensors (Basel). 2023 Jan 11;23(2):841. doi: 10.3390/s23020841.
3
Traffic Flow Prediction Model Based on the Combination of Improved Gated Recurrent Unit and Graph Convolutional Network.
Front Bioeng Biotechnol. 2022 Feb 14;10:804454. doi: 10.3389/fbioe.2022.804454. eCollection 2022.
4
Spatial linear transformer and temporal convolution network for traffic flow prediction.
Sci Rep. 2024 Feb 19;14(1):4040. doi: 10.1038/s41598-024-54114-9.
5
Spatial-Temporal Attention Mechanism and Graph Convolutional Networks for Destination Prediction.
Front Neurorobot. 2022 Jul 6;16:925210. doi: 10.3389/fnbot.2022.925210. eCollection 2022.
6
Spatio-temporal causal graph attention network for traffic flow prediction in intelligent transportation systems.
PeerJ Comput Sci. 2023 Jul 28;9:e1484. doi: 10.7717/peerj-cs.1484. eCollection 2023.
7
Dynamic Multi-Graph Convolution-Based Channel-Weighted Transformer Feature Fusion Network for Epileptic Seizure Prediction.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:4266-4277. doi: 10.1109/TNSRE.2023.3321414. Epub 2023 Nov 1.
8
MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder.
Comput Biol Med. 2022 Sep;148:105823. doi: 10.1016/j.compbiomed.2022.105823. Epub 2022 Jul 6.
9
A novel hybrid framework based on temporal convolution network and transformer for network traffic prediction.
PLoS One. 2023 Sep 8;18(9):e0288935. doi: 10.1371/journal.pone.0288935. eCollection 2023.

本文引用的文献

1
A Cyber-Physical System-Based Velocity-Profile Prediction Method and Case Study of Application in Plug-In Hybrid Electric Vehicle.
IEEE Trans Cybern. 2021 Jan;51(1):40-51. doi: 10.1109/TCYB.2019.2928945. Epub 2020 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验