Zhao Wei, Zhang Shiqi, Wang Bei, Zhou Bing
School of Artificial Intelligence and Computer Science, Zhengzhou University, Zhengzhou, China.
Cooperative Innovation Center of Internet Healthcare, Zhengzhou University, Zhengzhou, China.
PeerJ Comput Sci. 2023 Jul 28;9:e1484. doi: 10.7717/peerj-cs.1484. eCollection 2023.
Accurately predicting traffic flow on roads is crucial to address urban traffic congestion and save on travel time. However, this is a challenging task due to the strong spatial and temporal correlations of traffic data. Existing traffic flow prediction methods based on graph neural networks and recurrent neural networks often overlook the dynamic spatiotemporal dependencies between road nodes and excessively focus on the local spatiotemporal dependencies of traffic flow, thereby failing to effectively model global spatiotemporal dependencies. To overcome these challenges, this article proposes a new Spatio-temporal Causal Graph Attention Network (STCGAT). STCGAT utilizes a node embedding technique that enables the generation of spatial adjacency subgraphs on a per-time-step basis, without requiring any prior geographic information. This obviates the necessity for intricate modeling of constantly changing graph topologies. Additionally, STCGAT introduces a proficient causal temporal correlation module that encompasses node-adaptive learning, graph convolution, as well as local and global causal temporal convolution modules. This module effectively captures both local and global Spatio-temporal dependencies. The proposed STCGAT model is extensively evaluated on traffic datasets. The results show that it outperforms all baseline models consistently.
准确预测道路交通流量对于解决城市交通拥堵和节省出行时间至关重要。然而,由于交通数据具有很强的空间和时间相关性,这是一项具有挑战性的任务。现有的基于图神经网络和循环神经网络的交通流预测方法往往忽略了道路节点之间的动态时空依赖关系,过度关注交通流的局部时空依赖关系,从而无法有效地对全局时空依赖关系进行建模。为了克服这些挑战,本文提出了一种新的时空因果图注意力网络(STCGAT)。STCGAT利用节点嵌入技术,能够在每个时间步生成空间邻接子图,而无需任何先验地理信息。这消除了对不断变化的图拓扑进行复杂建模的必要性。此外,STCGAT引入了一个高效的因果时间相关模块,该模块包括节点自适应学习、图卷积以及局部和全局因果时间卷积模块。该模块有效地捕捉了局部和全局时空依赖关系。所提出的STCGAT模型在交通数据集上进行了广泛评估。结果表明,它始终优于所有基线模型。