Suppr超能文献

基于多物种机器学习的体外固有清除率预测及不确定性量化分析

Multispecies Machine Learning Predictions of In Vitro Intrinsic Clearance with Uncertainty Quantification Analyses.

作者信息

Rodríguez-Pérez Raquel, Trunzer Markus, Schneider Nadine, Faller Bernard, Gerebtzoff Grégori

机构信息

Novartis Institutes for Biomedical Research, Novartis Campus, BaselCH-4002, Switzerland.

出版信息

Mol Pharm. 2023 Jan 2;20(1):383-394. doi: 10.1021/acs.molpharmaceut.2c00680. Epub 2022 Nov 27.

Abstract

In pharmaceutical research, compounds are optimized for metabolic stability to avoid a too fast elimination of the drug. Intrinsic clearance (CL) measured in liver microsomes or hepatocytes is an important parameter during lead optimization. In this work, machine learning models were developed to relate the compound structure to microsomal metabolic stability and predict CL for new compounds. A multitask (MT) learning architecture was introduced to model the CL of six species simultaneously, giving as a result a multispecies machine learning model. MT graph neural network (MT-GNN) regression was identified as the top-performing method, and an ensemble of 10 MT-GNN models was evaluated prospectively. Geometric mean fold errors were consistently smaller than 2-fold. Moreover, high precision values were obtained in the prediction of "high" (>300 μL/min/mg) and "low" (<100 μL/min/mg) CL compounds. Precision values ranged from 80 to 94% for low CL predictions and from 75 to 97% for high CL predictions, depending on the species. Uncertainty on experimental values and model predictions was systematically quantified. Experimental variability (aleatoric uncertainty) of all historical Novartis in vitro clearance experiments was analyzed. Interestingly, MT-GNN models' performance approached assays' experimental variability. Moreover, uncertainty estimation in predictions (epistemic uncertainty) enabled identifying predictions associated with lower and higher error. Taken together, our manuscript combines a multispecies deep learning model and large-scale uncertainty analyses to improve CL predictions and facilitate early informed decisions for compound prioritization.

摘要

在药物研究中,化合物会针对代谢稳定性进行优化,以避免药物消除过快。在肝脏微粒体或肝细胞中测量的内在清除率(CL)是先导化合物优化过程中的一个重要参数。在这项工作中,开发了机器学习模型,将化合物结构与微粒体代谢稳定性相关联,并预测新化合物的CL。引入了多任务(MT)学习架构来同时模拟六个物种的CL,从而得到一个多物种机器学习模型。MT图神经网络(MT-GNN)回归被确定为表现最佳的方法,并对10个MT-GNN模型的集成进行了前瞻性评估。几何平均倍数误差始终小于2倍。此外,在预测“高”(>300μL/min/mg)和“低”(<100μL/min/mg)CL化合物时获得了高精度值。根据物种的不同,低CL预测的精度值范围为80%至94%,高CL预测的精度值范围为75%至97%。对实验值和模型预测的不确定性进行了系统量化。分析了诺华所有历史体外清除实验的实验变异性(偶然不确定性)。有趣的是,MT-GNN模型的性能接近实验的实验变异性。此外,预测中的不确定性估计(认知不确定性)能够识别与较低和较高误差相关的预测。总之,我们的论文结合了多物种深度学习模型和大规模不确定性分析,以改进CL预测,并为化合物优先级排序提供早期明智决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验