Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.).
Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
Drug Metab Dispos. 2023 Dec;51(12):1591-1606. doi: 10.1124/dmd.123.001436. Epub 2023 Sep 26.
Underestimation of aldehyde oxidase (AO)-mediated clearance by current in vitro assays leads to uncertainty in human dose projections, thereby reducing the likelihood of success in drug development. In the present study we first evaluated the current drug development practices for AO substrates. Next, the overall predictive performance of in vitro-in vivo extrapolation of unbound hepatic intrinsic clearance (CL) and unbound hepatic intrinsic clearance by AO (CL) was assessed using a comprehensive literature database of in vitro (human cytosol/S9/hepatocytes) and in vivo (intravenous/oral) data collated for 22 AO substrates (total of 100 datapoints from multiple studies). Correction for unbound fraction in the incubation was done by experimental data or in silico predictions. The fraction metabolized by AO (fm) determined via in vitro/in vivo approaches was found to be highly variable. The geometric mean fold errors (gmfe) for scaled CL (mL/min/kg) were 10.4 for human hepatocytes, 5.6 for human liver cytosols, and 5.0 for human liver S9, respectively. Application of these gmfe's as empirical scaling factors improved predictions (45%-57% within twofold of observed) compared with no correction (11%-27% within twofold), with the scaling factors qualified by leave-one-out cross-validation. A road map for quantitative translation was then proposed following a critical evaluation on the in vitro and clinical methodology to estimate in vivo fm In conclusion, the study provides the most robust system-specific empirical scaling factors to date as a pragmatic approach for the prediction of in vivo CL in the early stages of drug development. SIGNIFICANCE STATEMENT: Confidence remains low when predicting in vivo clearance of AO substrates using in vitro systems, leading to de-prioritization of AO substrates from the drug development pipeline to mitigate risk of unexpected and costly in vivo impact. The current study establishes a set of empirical scaling factors as a pragmatic tool to improve predictability of in vivo AO clearance. Developing clinical pharmacology strategies for AO substrates by utilizing mass balance/clinical drug-drug interaction data will help build confidence in fm.
当前的体外检测方法低估了醛氧化酶 (AO) 介导的清除率,导致对人体剂量预测的不确定性,从而降低了药物开发成功的可能性。本研究首先评估了目前 AO 底物的药物开发实践。接下来,我们使用综合文献数据库,对 22 种 AO 底物(来自多个研究的总共 100 个数据点)的体外(人细胞质/S9/肝细胞)和体内(静脉/口服)数据进行了体外-体内外推的整体预测性能评估。通过实验数据或计算预测对孵育中的未结合分数进行了校正。通过体外/体内方法确定的 AO 代谢分数 (fm) 差异很大。经比例化的 CL(mL/min/kg)的几何平均倍差误差(gmfe)分别为人类肝细胞的 10.4、人类肝胞质的 5.6 和人类肝 S9 的 5.0。与未校正相比(2 倍以内的 11%-27%),应用这些 gmfe 作为经验性缩放因子可改善预测(2 倍以内的 45%-57%),这些缩放因子通过留一交叉验证进行了限定。在对估计体内 fm 的体外和临床方法进行批判性评估后,提出了定量转化的路线图。综上所述,该研究提供了迄今为止最稳健的系统特异性经验性缩放因子,作为药物开发早期预测体内 CL 的实用方法。
使用体外系统预测 AO 底物的体内清除率时,置信度仍然较低,这导致 AO 底物从药物开发渠道中被降级,以降低意外和昂贵的体内影响的风险。本研究建立了一套经验性缩放因子,作为提高体内 AO 清除预测能力的实用工具。通过利用质量平衡/临床药物相互作用数据为 AO 底物开发临床药理学策略,将有助于提高 fm 的置信度。