Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France.
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Université de Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France.
J Control Release. 2023 Jan;353:1037-1049. doi: 10.1016/j.jconrel.2022.11.042. Epub 2022 Dec 22.
mRNA based infectious disease vaccines have opened the venue for development of novel nucleic acids-based therapeutics. For all mRNA therapeutics dedicated delivery systems are required, where different functionalities and targeting abilities need to be optimized for the respective applications. One option for advanced formulations with tailored properties are lipid-polymer hybrid nanoparticles with complex nanostructure, which allow to combine features of several already well described nucleic acid delivery systems. Here, we explored hyaluronic acid (HA) as coating of liposome-mRNA complexes (LRCs) to investigate effects of the coating on surface charge, physicochemical characteristics and biological activity. HA was electrostatically attached to positively charged complexes, forming hybrid LRCs (HLRCs). At different N/P ratios, physico-chemical characterization of the two sets of particles showed similarity in size (around 200 nm) and mRNA binding abilities, while the presence of the HA shell conferred a negative surface charge to otherwise positive complexes. High transfection efficiency of LRCs and HLRCs in vitro has been obtained in THP-1 and human monocytes derived from PBMC, an interesting target cell population for cancer and immune related pathologies. In mice, quantitative biodistribution of radiolabeled LRC and HLRC particles, coupled with bioluminescence studies to detect the protein translation sites, hinted towards both particles' accumulation in the hepatic reticuloendothelial system (RES). mRNA translated proteins though was found mainly in the spleen, a major source for immune cells, with preference for expression in macrophages. The results showed that surface modifications of liposome-mRNA complexes can be used to fine-tune nanoparticle physico-chemical characteristics. This provides a tool for assembly of stable and optimized nanoparticles, which are prerequisite for future therapeutic interventions using mRNA-based nanomedicines.
mRNA 传染病疫苗为新型核酸治疗药物的开发开辟了道路。所有的 mRNA 治疗药物都需要专门的给药系统,其中不同的功能和靶向能力需要针对各自的应用进行优化。具有定制特性的先进制剂的一种选择是具有复杂纳米结构的脂质-聚合物杂化纳米粒子,它可以结合几种已经描述的核酸递送系统的特性。在这里,我们探索了透明质酸(HA)作为脂质体-mRNA 复合物(LRC)的涂层,以研究涂层对表面电荷、物理化学特性和生物活性的影响。HA 通过静电附着在带正电荷的复合物上,形成杂化 LRC(HLRC)。在不同的 N/P 比下,对两组粒子的物理化学特性进行了研究,结果表明粒子的大小(约 200nm)和 mRNA 结合能力相似,而 HA 壳的存在赋予了原本带正电荷的复合物负的表面电荷。在体外,THP-1 和人单核细胞(一种针对癌症和免疫相关病理的有趣靶细胞群体)中,LRC 和 HLRC 的转染效率很高。在小鼠中,对放射性标记的 LRC 和 HLRC 粒子的定量生物分布进行了研究,并结合生物发光研究来检测蛋白质翻译部位,这表明两种粒子都在肝脏网状内皮系统(RES)中积累。然而,mRNA 翻译的蛋白质主要在脾脏中发现,脾脏是免疫细胞的主要来源,并且在巨噬细胞中优先表达。结果表明,脂质体-mRNA 复合物的表面修饰可用于微调纳米粒子的物理化学特性。这为组装稳定和优化的纳米粒子提供了一种工具,这是使用基于 mRNA 的纳米药物进行未来治疗干预的前提。