Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States.
Department of Materials Science and Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Boston, Massachusetts 02139, United States.
Langmuir. 2022 Dec 13;38(49):15121-15131. doi: 10.1021/acs.langmuir.2c02144. Epub 2022 Nov 30.
Control of heterogeneous ice nucleation (HIN) is critical for applications that range from iceophobic surfaces to ice-templated materials. HIN on 2D materials is a particular interesting topic that still lacks extensive experimental investigations. Here, we focus on the HIN on single-layer graphene (SLG) transferred onto different substrates, including silicon, silica, and thermal oxide on silicon. Complemented by other samples without SLG, we obtain a large range of wetting contact angles (WCAs) from 2° to 95°. All pristine SLG samples exhibit a large contact angle of ∼95°, which is close to the theoretical value of 96° for free-standing SLG, irrespective of the substrate and even in the presence of nanoscale wrinkles on SLG, which are due to the transfer process, indicating that the topographical features have little impact on the wetting behavior. Interestingly, SLG displays changes in hydrophobicity upon repeated water droplet freezing-melting-drying cycles due to a shift in Fermi level and/or enhanced water-substrate polar molecular interactions, likely induced by residual adsorption of HO molecules. We found that a 0.04 eV decrease in SLG Fermi level reduces the SLG/water interface energy by ∼6 mJ/m, thereby making SLG less hydrophobic. Counterintuitively, the reduction in SLG/water interface energy and the enhanced hydrophilicity after repeated freezing-melting-evaporation cycles actually decreases the freezing temperature by ∼3-4 °C, thereby slightly retarding rather than enhancing HIN. We also found that the water droplet freezing temperature differed by only ∼1 °C on different substrates with WCAs from 2° to 95°, an intriguing and yet reasonable result that confirms that wettability alone is a good indicator of HIN capability. The HIN rate is rather determined by the between substrate/water and substrate/ice interface energies, which was found to stay almost constant for substrates weakly interacting with water/ice via van der Waals or hydrogen bonds, irrespective of hydrophilicity.
控制异质成冰(HIN)对于从冰憎表面到冰模板材料的应用至关重要。二维材料上的 HIN 是一个特别有趣的话题,但仍缺乏广泛的实验研究。在这里,我们专注于转移到不同基底上的单层石墨烯(SLG)的 HIN,包括硅、二氧化硅和硅上的热氧化物。通过补充其他没有 SLG 的样品,我们获得了从 2°到 95°的大范围润湿接触角(WCA)。所有原始的 SLG 样品都表现出约 95°的大接触角,这与自由-standing SLG 的理论值 96°非常接近,无论基底如何,甚至在 SLG 上存在纳米级皱纹的情况下也是如此,这是由于转移过程所致,表明形貌特征对润湿行为的影响很小。有趣的是,由于费米能级的移动和/或增强的水分子-基底极性分子相互作用,SLG 在反复的水滴冻结-融化-干燥循环中表现出疏水性的变化,这可能是由 HO 分子的残留吸附引起的。我们发现,SLG 费米能级降低 0.04 eV,会使 SLG/水界面能降低约 6 mJ/m,从而使 SLG 变得不那么疏水。反直觉的是,在反复的冻结-融化-蒸发循环后,SLG/水界面能的降低和增强的亲水性实际上会使冻结温度降低约 3-4°C,从而稍微延迟而不是增强 HIN。我们还发现,不同基底上水滴的冻结温度相差仅约 1°C,WCA 从 2°到 95°,这是一个有趣且合理的结果,证实了润湿性本身是 HIN 能力的良好指标。HIN 速率主要取决于基底/水和基底/冰界面能之间的差异,我们发现,对于通过范德华力或氢键与水/冰弱相互作用的基底,该差异几乎保持不变,与亲水性无关。