Al-Tarawneh Sandra K, Thalji Ghadeer, Cooper Lyndon F
Int J Oral Maxillofac Implants. 2022 Nov-Dec;37(6):1110-1118. doi: 10.11607/jomi.9656.
To evaluate an alternative cutting, progressive thread design to increase primary stability in low-density bone.
Four different implants with different macrogeometries (Nobel Biocare Active [NA] Internal RP implants [4.3 × 11.5 mm], Straumann BLX Roxolid RB implants [4.5 × 10 mm], Astra Tech Implant EV implants [4.2 × 11 mm], and PrimeTaper [PT 4.2 × 11 mm]) were placed in simulated osteotomies and extraction sockets in synthetic bone (Sawbones) according to the manufacturers' protocol. Insertion torque and ISQ values were measured using Implantmed Plus motor and Ostell IDX, respectively. Insertion time was recorded. Average values were calculated and compared using ANOVA and Tukey test.
Insertion torque (range: 5 to 44 Ncm) increased with increasing synthetic bone density for all implants. Different ISQ values in synthetic low-density bone were not observed in higher-density synthetic bone. Insertion torque of all implants was reduced when implants were placed in simulated sockets compared to simulated osteotomies. In both low-density and higher-density synthetic bone, the primary stability of PrimeTaper implants with cutting and progressive thread design was equivalent to that of the Nobel Biocare NobelActive implant with compressive thread design and greater than the BLX implant with compressive thread design.
Different implant macrogeometries obtain relatively high primary stability in low-density bone when measured by ISQ. Doublethread implant designs reduce insertion times in higher-density bone. A cutting and progressive compressing thread design provides density-sensing performance compared to aggressive condensing thread designs. This macrogeometry can achieve high primary stability associated with modest insertion torque compared to aggressive threaded implant designs known to attain the highest insertion torque. The presence of multiple cutting threads may offer advantages in obtaining primary stability in low-density bone.
评估一种用于增加在低密度骨中初期稳定性的替代性切割、渐进式螺纹设计。
根据制造商的方案,将四种具有不同宏观几何形状的不同种植体(诺贝尔生物科技活性[NA]内部RP种植体[4.3×11.5毫米]、士卓曼BLX Roxolid RB种植体[4.5×10毫米]、阿斯特拉技术种植体EV种植体[4.2×11毫米]和PrimeTaper[PT 4.2×11毫米])植入合成骨(Sawbones)中的模拟截骨术部位和拔牙窝内。分别使用Implantmed Plus马达和Ostell IDX测量植入扭矩和ISQ值。记录植入时间。计算平均值,并使用方差分析和Tukey检验进行比较。
所有种植体的植入扭矩(范围:5至44牛厘米)均随着合成骨密度的增加而增加。在高密度合成骨中未观察到合成低密度骨中不同的ISQ值。与模拟截骨术相比,当种植体植入模拟拔牙窝时,所有种植体的植入扭矩均降低。在低密度和高密度合成骨中,具有切割和渐进式螺纹设计的PrimeTaper种植体的初期稳定性等同于具有压缩螺纹设计的诺贝尔生物科技诺贝尔活性种植体,且大于具有压缩螺纹设计的BLX种植体。
通过ISQ测量时,不同的种植体宏观几何形状在低密度骨中可获得相对较高的初期稳定性。双螺纹种植体设计可减少在高密度骨中的植入时间。与激进的压缩螺纹设计相比,切割和渐进式压缩螺纹设计具有密度感应性能。与已知可获得最高植入扭矩的激进螺纹种植体设计相比,这种宏观几何形状可在适度的植入扭矩下实现较高的初期稳定性。多个切割螺纹的存在可能在获得低密度骨的初期稳定性方面具有优势。