Suppr超能文献

基于 N,N-二氨基喹唑啉和 N,N-二氨基嘌呤骨架的 PDE5 抑制剂的计算设计、合成与生物评价。

Computational design, synthesis and biological evaluation of PDE5 inhibitors based on N,N-diaminoquinazoline and N,N-diaminopurine scaffolds.

机构信息

Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.

Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.

出版信息

Bioorg Med Chem. 2022 Dec 15;76:117092. doi: 10.1016/j.bmc.2022.117092. Epub 2022 Nov 17.

Abstract

We report the synthesis, and characterization of twenty-nine new inhibitors of PDE5. Structure-based design was employed to modify to our previously reported 2,4-diaminoquinazoline series. Modification include scaffold hopping to 2,6-diaminopurine core as well as incorporation of ionizable groups to improve both activity and solubility. The prospective binding mode of the compounds was determined using 3D ligand-based similarity methods to inhibitors of known binding mode, combined with a PDE5 docking and molecular dynamics based-protocol, each of which pointed to the same binding mode. Chemical modifications were then designed to both increase potency and solubility as well as validate the binding mode prediction. Compounds containing a quinazoline core displayed ICs ranging from 0.10 to 9.39 µM while those consisting of a purine scaffold ranging from 0.29 to 43.16 µM. We identified 25 with a PDE5 IC of 0.15 µM, and much improved solubility (1.77 mg/mL) over the starting lead. Furthermore, it was found that the predicted binding mode was consistent with the observed SAR validating our computationally driven approach.

摘要

我们报告了 29 种新的 PDE5 抑制剂的合成和表征。采用基于结构的设计来修改我们之前报道的 2,4-二氨基喹唑啉系列。修饰包括支架跳跃到 2,6-二氨基嘌呤核心以及引入可电离基团,以提高活性和溶解度。使用基于 3D 配体相似性的方法来确定化合物的预期结合模式,结合 PDE5 对接和基于分子动力学的方案,这两者都指向相同的结合模式。然后设计化学修饰以提高效力和溶解度,并验证结合模式预测。含有喹唑啉核心的化合物的 IC50 范围为 0.10 至 9.39 μM,而含有嘌呤支架的化合物的 IC50 范围为 0.29 至 43.16 μM。我们确定了 25 种 PDE5 的 IC50 为 0.15 μM,并且比起始先导物的溶解度(1.77 mg/mL)有了很大提高。此外,发现预测的结合模式与观察到的 SAR 一致,验证了我们计算驱动的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验