Guntur Guntur, Gleeson Duangkamol, Anderson Mark, Mutter Nicole, Webster Lauren, Read Kevin D, Gleeson M Paul
Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520 Thailand
Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520 Thailand.
RSC Med Chem. 2025 Aug 20. doi: 10.1039/d5md00353a.
() is the most prevalent cause of malaria infections in humans. Due to the development of resistant strains, newer drugs, or drugs acting at novel targets are constantly being sought. Here, we report the design and preparation of 48 new 2,4-diaminopyrimidine derivatives targeting the protein kinome. Bioinformatics methods have been used to identify the most probable target(s). Cheminformatics and molecular modelling have been used to guide the structural modifications. Our primary goal was to enhance the antimalarial activity of the series, reduce mammalian cytotoxicity, and increase aqueous solubility. The antimalarial activity of all 48 compounds has been assessed in chloroquine-resistant 3D7 strain and for their mammalian cytotoxicity in HepG2 cell lines. Phosphate buffer solubility, MDCK permeability, and metabolic clearance in human and rat microsomes were also assessed. Compounds 68 and 69 demonstrated good antimalarial activity ( IC) of 0.05 and 0.06 μM, respectively, and good selectivity over the mammalian cell line (SI >100 fold). The compounds also demonstrated much improved aqueous solubilities of 989.7 and 1573 μg mL, respectively, along with moderate intrinsic clearance (∼3 mL min g) and permeability (>60 nm s).
()是人类疟疾感染最普遍的病因。由于耐药菌株的出现,人们一直在不断寻找更新的药物或作用于新靶点的药物。在此,我们报告了48种针对蛋白激酶组的新型2,4 - 二氨基嘧啶衍生物的设计与制备。已使用生物信息学方法来确定最可能的靶点。化学信息学和分子建模已用于指导结构修饰。我们的主要目标是增强该系列的抗疟活性、降低哺乳动物细胞毒性并提高水溶性。已在耐氯喹的3D7菌株中评估了所有48种化合物的抗疟活性,并在HepG2细胞系中评估了它们对哺乳动物的细胞毒性。还评估了磷酸盐缓冲液溶解度、MDCK通透性以及在人和大鼠微粒体中的代谢清除率。化合物68和69分别表现出良好的抗疟活性(IC),为0.05和0.06 μM,并且对哺乳动物细胞系具有良好的选择性(SI >100倍)。这些化合物的水溶性也分别有很大提高,达到989.7和1573 μg/mL,同时具有适度的内在清除率(约3 mL min g)和通透性(>60 nm s)。