Suppr超能文献

来自非厄米位置依赖非对易性的量子引力的最小和最大长度

Minimal and maximal lengths of quantum gravity from non-hermitian position-dependent noncommutativity.

作者信息

Lawson Latévi M

机构信息

African Institute for Mathematical Sciences (AIMS) Ghana, Summerhill Estates, East Legon Hills, Santoe, P.O. Box LG DTD 20046, Legon, Accra, Ghana.

Laboratoire de Physique des Matériaux et des Composants à Semi-Conducteurs, Departement de Physique, Faculté des Sciences, Université de Lomé, 01 BP 1515, Lomé, Togo.

出版信息

Sci Rep. 2022 Nov 30;12(1):20650. doi: 10.1038/s41598-022-21098-3.

Abstract

A minimum length scale of the order of Planck length is a feature of many models of quantum gravity that seek to unify quantum mechanics and gravitation. Recently, Perivolaropoulos in his seminal work (Perivolaropoulos in Phys. Rev. D 95:103523, 2017) predicted the simultaneous existence of minimal and maximal length measurements of quantum gravity. More recently, we have shown that both measurable lengths can be obtained from position-dependent noncommutativity (Lawson in J. Phys. A Math.Theor. 53:115303, 2020). In this paper, we present an alternative derivation of these lengths from non-Hermitian position-dependent noncommutativity. We show that a simultaneous measurement of both lengths form a family of discrete spaces. In one hand, we show the similarities between the maximal uncertainty measurement and the classical properties of gravity. On the other hand, the connection between the minimal uncertainties and the non-Hermicity quantum mechanic scenarios. The existence of minimal uncertainties are the consequences of non-Hermicities of some operators that are generators of this noncommutativity. With an appropriate Dyson map, we demonstrate by a similarity transformation that the physically meaningfulness of dynamical quantum systems is generated by a hidden Hermitian position-dependent noncommutativity. This transformation preserves the properties of quantum gravity but removes the fuzziness induced by minimal uncertainty measurements at this scale. Finally, we study the eigenvalue problem of a free particle in a square-well potential in these new Hermitian variables.

摘要

普朗克长度量级的最小长度尺度是许多试图统一量子力学和引力的量子引力模型的一个特征。最近,佩里沃洛普洛斯在其开创性工作中(佩里沃洛普洛斯,《物理评论D》95:103523,2017)预测了量子引力中最小和最大长度测量的同时存在。最近,我们已经表明,这两种可测量长度都可以从位置依赖的非对易性中获得(劳森,《物理学报A:数学理论》53:115303,2020)。在本文中,我们从非厄米位置依赖的非对易性给出了这些长度的另一种推导。我们表明,这两种长度的同时测量形成了一族离散空间。一方面,我们展示了最大不确定性测量与引力经典性质之间的相似性。另一方面,最小不确定性与非厄米量子力学情形之间的联系。最小不确定性的存在是一些作为这种非对易性生成元的算符非厄米性的结果。通过适当的戴森映射,我们通过相似变换证明,动力学量子系统的物理有意义性是由隐藏的厄米位置依赖的非对易性产生的。这种变换保留了量子引力的性质,但消除了在这个尺度上由最小不确定性测量引起的模糊性。最后,我们研究了在这些新的厄米变量下,自由粒子在方势阱中的本征值问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eeb8/9712687/dc5fcf511299/41598_2022_21098_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验