de Sousa D J P, Xue Fei, Wang J P, Haney P M, Low Tony
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.
Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6202, USA.
Phys Rev B. 2021 Jun 15;103(24). doi: 10.1103/physrevb.103.l241103.
We study the current-induced torques in asymmetric magnetic tunnel junctions containing a conventional ferromagnet and a magnetic Weyl semimetal contact. The Weyl semimetal hosts chiral bulk states and topologically protected Fermi arc surface states which were found to govern the voltage behavior and efficiency of current-induced torques. We report how bulk chirality dictates the sign of the non-equilibrium torques acting on the ferromagnet and discuss the existence of large field-like torques acting on the magnetic Weyl semimetal which exceeds the theoretical maximum of conventional magnetic tunnel junctions. The latter are derived from the Fermi arc spin texture and display a counter-intuitive dependence on the Weyl nodes separation. Our results shed light on the new physics of multilayered spintronic devices comprising of magnetic Weyl semimetals, which might open doors for new energy efficient spintronic devices.
我们研究了包含传统铁磁体和磁性外尔半金属接触的非对称磁性隧道结中的电流感应转矩。外尔半金属具有手性体态和拓扑保护的费米弧表面态,发现这些态决定了电流感应转矩的电压行为和效率。我们报告了体手性如何决定作用在铁磁体上的非平衡转矩的符号,并讨论了作用在磁性外尔半金属上的类似大场转矩的存在,该转矩超过了传统磁性隧道结的理论最大值。后者源自费米弧自旋纹理,并表现出对外尔节点间距的反直觉依赖性。我们的结果揭示了由磁性外尔半金属组成的多层自旋电子器件的新物理,这可能为新型节能自旋电子器件打开大门。