Shahbabaei Majid, Tang Tian
Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
Phys Chem Chem Phys. 2022 Dec 14;24(48):29298-29327. doi: 10.1039/d2cp03839k.
The scarcity of freshwater resources is a major global challenge causedby population and economic growth. Water desalination using a reverse osmosis (RO) membrane is a promising technology to supply potable water from seawater and brackish water. The advancement of RO desalination highly depends on new membrane materials. Currently, the RO technology mainly relies on polyamide thin-film composite (TFC) membranes, which suffer from several drawbacks (, low water permeability, permeability-selectivity tradeoff, and low fouling resistance) that hamper their real-world applications. Nanoscale fillers with specific characteristics can be used to improve the properties of TFC membranes. Embedding nanofillers into TFC membranes using interfacial polymerization allows the creation of thin-film nanocomposite (TFNC) membranes, and has become an emerging strategy in the fabrication of high-performance membranes for advanced RO water desalination. To achieve optimal design, it is indispensable to search for reliable methods that can provide fast and accurate predictions of the structural and transport properties of the TFNC membranes. However, molecular understanding of permeability-selectivity characteristics of nanofillers remains limited, partially due to the challenges in experimentally exploring microscopic behaviors of water and salt ions in confinement. Molecular modeling and simulations can fill this gap by generating molecular-level insights into the effects of nanofillers' characteristics (, shape, size, surface chemistry, and density) on water permeability and ion selectivity. In this review, we summarize molecular simulations of a diverse range of nanofillers including nanotubes (carbon nanotubes, boron nitride nanotubes, and aquaporin-mimicking nanochannels) and nanosheets (graphene, graphene oxide, boron nitride sheets, molybdenum disulfide, metal and covalent organic frameworks) for water desalination applications. These simulations reveal that water permeability and salt rejection, as the major factors determining the desalination performance of TFNC membranes, significantly depend on the size, topology, density, and chemical modifications of the nanofillers. Identifying their influences and the physicochemical processes behind, molecular modeling, is expected to yield important insights for the fabrication and optimization of the next generation high-performance TFNC membranes for RO water desalination.
淡水资源短缺是由人口和经济增长导致的一项重大全球挑战。使用反渗透(RO)膜进行海水淡化是一种从海水和苦咸水中供应饮用水的有前景的技术。RO 海水淡化技术的进步高度依赖于新型膜材料。目前,RO 技术主要依赖聚酰胺复合薄膜(TFC)膜,这种膜存在一些缺点(如水渗透率低、渗透率与选择性的权衡以及抗污染性低),这阻碍了它们在实际中的应用。具有特定特性的纳米级填料可用于改善 TFC 膜的性能。通过界面聚合将纳米填料嵌入 TFC 膜中可制备薄膜纳米复合(TFNC)膜,并且已成为用于先进 RO 水淡化的高性能膜制造中的一种新兴策略。为了实现优化设计,寻找能够快速准确预测 TFNC 膜的结构和传输性能的可靠方法是必不可少的。然而,对纳米填料的渗透率 - 选择性特性的分子理解仍然有限,部分原因是在实验中探索受限环境中水分子和盐离子的微观行为存在挑战。分子建模和模拟可以通过生成关于纳米填料特性(如形状、尺寸、表面化学和密度)对水渗透率和离子选择性影响的分子水平见解来填补这一空白。在这篇综述中,我们总结了用于水淡化应用的各种纳米填料的分子模拟,包括纳米管(碳纳米管、氮化硼纳米管和模拟水通道蛋白的纳米通道)和纳米片(石墨烯、氧化石墨烯、氮化硼片、二硫化钼、金属和共价有机框架)。这些模拟表明,作为决定 TFNC 膜淡化性能的主要因素,水渗透率和脱盐率显著取决于纳米填料的尺寸、拓扑结构、密度和化学修饰。识别它们的影响以及背后的物理化学过程,即分子建模,有望为下一代用于 RO 水淡化的高性能 TFNC 膜的制造和优化提供重要见解。