Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København, Denmark.
Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, København, Denmark.
Chemistry. 2023 Feb 10;29(9):e202203084. doi: 10.1002/chem.202203084. Epub 2022 Dec 29.
The nanoviscosity experienced by molecules in solution may be determined through measurement of the molecular rotational correlation time, τ , for example, by fluorescence and NMR spectroscopy. With this work, we apply PAC spectroscopy to determine the rate of rotational diffusion, λ=1/τ , of a de novo designed protein, TRIL12AL16C, in solutions with viscosities, ξ, from 1.7 to 88 mPa⋅s. TRIL12AL16C was selected as molecular probe because it exhibits minimal effects due to intramolecular dynamics and static line broadening, allowing for exclusive elucidation of molecular rotational diffusion. Diffusion rates determined by PAC data agree well with literature data from fluorescence and NMR spectroscopy, and scales linearly with 1/ξ in agreement with the Stokes-Einstein-Debye model. PAC experiments require only trace amounts (∼10 ) of probe nuclei and can be conducted over a broad range of sample temperatures and pressures. Moreover, most materials are relatively transparent to γ-rays. Thus, PAC spectroscopy could find applications under circumstances where conventional techniques cannot be applied, spanning from the physics of liquids to in-vivo biochemistry.
溶液中分子所经历的纳米粘度可以通过测量分子旋转相关时间τ来确定,例如通过荧光和 NMR 光谱。在这项工作中,我们应用 PAC 光谱法来确定从头设计的蛋白质 TRIL12AL16C 在粘度为 1.7 到 88 mPa·s 的溶液中的旋转扩散速率 λ=1/τ。选择 TRIL12AL16C 作为分子探针,是因为它由于分子内动力学和静态线宽的影响最小,允许专门阐明分子旋转扩散。通过 PAC 数据确定的扩散速率与荧光和 NMR 光谱的文献数据非常吻合,并与 Stokes-Einstein-Debye 模型一致,呈 1/ξ 的线性关系。PAC 实验仅需要痕量(约 10 )的探针核,并且可以在广泛的样品温度和压力范围内进行。此外,大多数材料对γ射线相对透明。因此,PAC 光谱法可以在常规技术无法应用的情况下找到应用,从液体物理到体内生物化学。