Kano Takumi, Umeno Ken
Physical Statistics Laboratory, Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan.
Chaos. 2022 Nov;32(11):113137. doi: 10.1063/5.0100897.
Considering a system combining two generalized Boolean transformations, we found that depending on the parameters, we can generate generalized synchronization such that the two chaotic orbits have arbitrary proportional linear relations. We rigorously determined its synchronization conditions by the explicit computing conditional Lyapunov exponent using the ergodic property and stable property of the Cauchy distribution. We found that a phenomenon similar to chaotic synchronization occurs even when the synchronization conditions are not strictly satisfied, which exhibits some degree of structural stability of chaotic synchronization. Our model can be further extended to systems with more degrees of freedom and, in the future, can be applied to reservoir computing.
考虑一个结合了两个广义布尔变换的系统,我们发现,根据参数的不同,我们可以生成广义同步,使得两个混沌轨道具有任意比例的线性关系。我们利用柯西分布的遍历性和稳定性,通过显式计算条件李雅普诺夫指数,严格确定了其同步条件。我们发现,即使同步条件没有得到严格满足,也会出现一种类似于混沌同步的现象,这体现了混沌同步的某种程度的结构稳定性。我们的模型可以进一步扩展到具有更多自由度的系统,并且在未来可应用于储层计算。