Suppr超能文献

相互耦合系统的混沌同步——任意比例线性关系

Chaotic synchronization of mutually coupled systems-arbitrary proportional linear relations.

作者信息

Kano Takumi, Umeno Ken

机构信息

Physical Statistics Laboratory, Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan.

出版信息

Chaos. 2022 Nov;32(11):113137. doi: 10.1063/5.0100897.

Abstract

Considering a system combining two generalized Boolean transformations, we found that depending on the parameters, we can generate generalized synchronization such that the two chaotic orbits have arbitrary proportional linear relations. We rigorously determined its synchronization conditions by the explicit computing conditional Lyapunov exponent using the ergodic property and stable property of the Cauchy distribution. We found that a phenomenon similar to chaotic synchronization occurs even when the synchronization conditions are not strictly satisfied, which exhibits some degree of structural stability of chaotic synchronization. Our model can be further extended to systems with more degrees of freedom and, in the future, can be applied to reservoir computing.

摘要

考虑一个结合了两个广义布尔变换的系统,我们发现,根据参数的不同,我们可以生成广义同步,使得两个混沌轨道具有任意比例的线性关系。我们利用柯西分布的遍历性和稳定性,通过显式计算条件李雅普诺夫指数,严格确定了其同步条件。我们发现,即使同步条件没有得到严格满足,也会出现一种类似于混沌同步的现象,这体现了混沌同步的某种程度的结构稳定性。我们的模型可以进一步扩展到具有更多自由度的系统,并且在未来可应用于储层计算。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验