Suppr超能文献

使用贝叶斯随机能量平衡框架分离全球温度变化中内部和外部强迫贡献。

Separating internal and externally forced contributions to global temperature variability using a Bayesian stochastic energy balance framework.

作者信息

Schillinger Maybritt, Ellerhoff Beatrice, Scheichl Robert, Rehfeld Kira

机构信息

Seminar for Statistics, Department of Mathematics, ETH Zurich, Rämistrasse 101, 8092 Zurich, Switzerland.

Department of Physics and Department of Geosciences, Tübingen University, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany.

出版信息

Chaos. 2022 Nov;32(11):113146. doi: 10.1063/5.0106123.

Abstract

Earth's temperature variability can be partitioned into internal and externally forced components. Yet, underlying mechanisms and their relative contributions remain insufficiently understood, especially on decadal to centennial timescales. Important reasons for this are difficulties in isolating internal and externally forced variability. Here, we provide a physically motivated emulation of global mean surface temperature (GMST) variability, which allows for the separation of internal and external variations. To this end, we introduce the "ClimBayes" software package, which infers climate parameters from a stochastic energy balance model (EBM) with a Bayesian approach. We apply our method to GMST data from temperature observations and 20 last millennium simulations from climate models of intermediate to high complexity. This yields the best estimates of the EBM's forced and forced + internal response, which we refer to as emulated variability. The timescale-dependent variance is obtained from spectral analysis. In particular, we contrast the emulated forced and forced + internal variance on interannual to centennial timescales with that of the GMST target. Our findings show that a stochastic EBM closely approximates the power spectrum and timescale-dependent variance of GMST as simulated by modern climate models. Small deviations at interannual timescales can be attributed to the simplified representation of internal variability and, in particular, the absence of (pseudo-)oscillatory modes in the stochastic EBM. Altogether, we demonstrate the potential of combining Bayesian inference with conceptual climate models to emulate statistics of climate variables across timescales.

摘要

地球温度变化可分为内部和外部强迫分量。然而,其潜在机制及其相对贡献仍未得到充分理解,尤其是在年代际到百年时间尺度上。造成这种情况的重要原因是难以分离内部和外部强迫变化。在此,我们提供了一种基于物理原理的全球平均地表温度(GMST)变化模拟方法,该方法能够分离内部和外部变化。为此,我们引入了“ClimBayes”软件包,它采用贝叶斯方法从随机能量平衡模型(EBM)中推断气候参数。我们将我们的方法应用于温度观测的GMST数据以及来自中等至高复杂度气候模型的20个过去千年模拟数据。这得出了EBM的强迫响应和强迫 + 内部响应的最佳估计值,我们将其称为模拟变化。时间尺度相关的方差通过频谱分析获得。特别是,我们将年代际到百年时间尺度上模拟的强迫和强迫 + 内部方差与GMST目标的方差进行对比。我们的研究结果表明,一个随机EBM紧密近似于现代气候模型模拟的GMST的功率谱和时间尺度相关方差。年际时间尺度上的小偏差可归因于内部变化的简化表示,特别是随机EBM中不存在(伪)振荡模式。总之,我们展示了将贝叶斯推断与概念性气候模型相结合以跨时间尺度模拟气候变量统计数据的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验