Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing400044, China.
Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing400044, China.
ACS Appl Mater Interfaces. 2022 Dec 14;14(49):54840-54847. doi: 10.1021/acsami.2c18736. Epub 2022 Dec 2.
Direct electrolytic CO capture solution (e.g., bicarbonate), which bypasses the energy-intensive processes of CO desorption, offers a unique route for CO conversion to fuels or value-added chemicals. Nonprecious Ni single-atom catalysts (SACs) anchored on metal-organic frameworks (MOFs) possess abundant porous structures and exhibit a high selectivity for CO production. However, these MOF-derived Ni SACs are usually synthesized by a series of complex procedures, and their abundant micropores (<2 nm) also reduce the local reactant transport in the catalysts. Herein, we report a simple one-step pyrolysis method to prepare a MOF-derived Ni SAC that can efficiently boost bicarbonate conversion to CO. The abundant mesopores around 35.4 nm significantly enhance the transport of local reactants in the catalysts. At a high current density of 100 mA/cm, the tailored catalyst shows 67.2% Faradaic efficiency of CO, which, to the best of our knowledge, exceeds the state-of-the-art precious Ag nanoparticle catalysts reported so far. This study highlights the significance of developing nonprecious catalysts for employment in large-scale bicarbonate electrolysis conversion devices.
直接电解 CO 捕获溶液(例如碳酸氢盐)绕过了 CO 解吸这一能耗密集型过程,为 CO 转化为燃料或高附加值化学品提供了一条独特的途径。锚定在金属有机骨架(MOFs)上的非贵金属镍单原子催化剂(SACs)具有丰富的多孔结构,对 CO 的生成表现出很高的选择性。然而,这些 MOF 衍生的 Ni SACs 通常通过一系列复杂的程序合成,其丰富的微孔(<2nm)也会降低催化剂中局部反应物的传输。在此,我们报告了一种简单的一步热解法来制备 MOF 衍生的 Ni SAC,该 SAC 可有效地促进碳酸氢盐向 CO 的转化。35.4nm 左右的丰富介孔显著提高了催化剂中局部反应物的传输。在 100mA/cm 的高电流密度下,定制催化剂的 CO 法拉第效率达到 67.2%,据我们所知,这超过了迄今为止报道的最先进的贵金属 Ag 纳米颗粒催化剂。本研究强调了开发非贵金属催化剂用于大规模碳酸氢盐电解转化装置的重要性。