Varghese Jeena, Mohammadi Reza, Pochylski Mikolaj, Babacic Visnja, Gapinski Jacek, Vogel Nicolas, Butt Hans-Juergen, Fytas George, Graczykowski Bartlomiej
Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland.
Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstrasse 4, Erlangen D-91058, Germany.
J Colloid Interface Sci. 2023 Mar;633:314-322. doi: 10.1016/j.jcis.2022.11.090. Epub 2022 Nov 24.
Polymer particles self-assembled into colloidal crystals have exciting applications in photonics, phononics, templates for nanolithography, and coatings. Cold soldering utilizing polymer plasticization by supercritical fluids enables a novel, low-cost, low-effort, chemical-free means for uniform mechanical strengthening of fragile polymer colloidal crystals at moderate temperatures. Here, we aim to elucidate the role of particle size and gas-specific response for the most efficient soldering, exploring the full potential of this method.
We investigate the elastic properties of polystyrene colloidal crystals made of nanoparticles with different diameters (143 to 830 nm) upon treatment with supercritical Ar and He at room temperature. By employing Brillouin light scattering, we quantify the effect of nanoparticle size on the strengthening of interparticle contacts, evaluating the permanent change in the effective elastic modulus upon cold soldering.
The relative change in the effective elastic modulus reveals nonmonotonic dependence on the particle size with the most efficient soldering for mid-sized nanoparticles (about 610 nm diameter). We attribute this behavior to the crucial role of intrinsic fabrication impurities, which reduces the nanoparticles' free surface exposed to plasticization by supercritical fluids. Supercritical Ar, a good solvent for polystyrene, enabled effective soldering of nanoparticles, whereas high-pressure He treatment is entirely reversible.
自组装成胶体晶体的聚合物颗粒在光子学、声子学、纳米光刻模板和涂层方面有着令人兴奋的应用。利用超临界流体使聚合物塑化的冷焊技术,为在中等温度下对易碎聚合物胶体晶体进行均匀机械强化提供了一种新颖、低成本、省力且无化学物质的方法。在此,我们旨在阐明颗粒尺寸和气体特定响应在最有效焊接中的作用,探索该方法的全部潜力。
我们研究了由不同直径(143至830纳米)的纳米颗粒制成的聚苯乙烯胶体晶体在室温下用超临界氩气和氦气处理后的弹性性能。通过采用布里渊光散射,我们量化了纳米颗粒尺寸对颗粒间接触强化的影响,评估了冷焊后有效弹性模量的永久变化。
有效弹性模量的相对变化显示出对颗粒尺寸的非单调依赖性,中等尺寸的纳米颗粒(直径约610纳米)焊接效率最高。我们将这种行为归因于固有制造杂质的关键作用,这些杂质减少了纳米颗粒暴露于超临界流体塑化的自由表面。超临界氩气是聚苯乙烯的良溶剂,能够有效地焊接纳米颗粒,而高压氦气处理则完全是可逆的。