Department of Computational Medicine, University of California Los Angeles, BOX 951766, Room 5303 Life Sciences, Los Angeles, CA, 90095-1766, USA.
Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA.
Sci Rep. 2022 Dec 2;12(1):20810. doi: 10.1038/s41598-022-24813-2.
Neurons are connected by complex branching processes-axons and dendrites-that process information for organisms to respond to their environment. Classifying neurons according to differences in structure or function is a fundamental part of neuroscience. Here, by constructing biophysical theory and testing against empirical measures of branching structure, we develop a general model that establishes a correspondence between neuron structure and function as mediated by principles such as time or power minimization for information processing as well as spatial constraints for forming connections. We test our predictions for radius scale factors against those extracted from neuronal images, measured for species that range from insects to whales, including data from light and electron microscopy studies. Notably, our findings reveal that the branching of axons and peripheral nervous system neurons is mainly determined by time minimization, while dendritic branching is determined by power minimization. Our model also predicts a quarter-power scaling relationship between conduction time delay and body size.
神经元通过复杂的分支过程——轴突和树突——来处理信息,使生物体能够对环境做出反应。根据结构或功能的差异对神经元进行分类是神经科学的一个基本部分。在这里,我们通过构建生物物理理论并根据分支结构的经验测量进行测试,开发了一种通用模型,该模型建立了神经元结构和功能之间的对应关系,这种对应关系是由信息处理的时间或功率最小化以及形成连接的空间约束等原则介导的。我们将预测的半径比例因子与从神经元图像中提取的半径比例因子进行了比较,这些图像是针对从昆虫到鲸鱼等不同物种测量的,包括来自光学和电子显微镜研究的数据。值得注意的是,我们的研究结果表明,轴突和外周神经系统神经元的分支主要由时间最小化决定,而树突分支则由功率最小化决定。我们的模型还预测了传导时间延迟和身体大小之间的四分之一幂律关系。