Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.
Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada.
Elife. 2019 Jan 9;8:e40025. doi: 10.7554/eLife.40025.
Understanding the circuit mechanisms behind motion detection is a long-standing question in visual neuroscience. In , recently discovered synapse-level connectomes in the optic lobe, particularly in ON-pathway (T4) receptive-field circuits, in concert with physiological studies, suggest a motion model that is increasingly intricate when compared with the ubiquitous Hassenstein-Reichardt model. By contrast, our knowledge of OFF-pathway (T5) has been incomplete. Here, we present a conclusive and comprehensive connectome that, for the first time, integrates detailed connectivity information for inputs to both the T4 and T5 pathways in a single EM dataset covering the entire optic lobe. With novel reconstruction methods using automated synapse prediction suited to such a large connectome, we successfully corroborate previous findings in the T4 pathway and comprehensively identify inputs and receptive fields for T5. Although the two pathways are probably evolutionarily linked and exhibit many similarities, we uncover interesting differences and interactions that may underlie their distinct functional properties.
理解运动检测背后的电路机制是视觉神经科学中长期存在的问题。最近在光脑中发现了突触级别的连接组,特别是在 ON 通路(T4)感受野回路中,与生理学研究一起,提出了一个运动模型,与普遍存在的哈斯泰因-赖希哈德模型相比,这个模型变得越来越复杂。相比之下,我们对 OFF 通路(T5)的了解并不完整。在这里,我们提出了一个结论性的、全面的连接组,这是第一次在一个涵盖整个光脑的单个 EM 数据集内,将 T4 和 T5 通路的输入的详细连接信息整合在一起。使用适用于如此大的连接组的自动突触预测的新重建方法,我们成功地证实了 T4 通路中的先前发现,并全面识别了 T5 的输入和感受野。尽管这两条通路可能在进化上是相关的,并表现出许多相似之处,但我们发现了一些有趣的差异和相互作用,这些差异和相互作用可能是它们独特功能特性的基础。