Suppr超能文献

挤压豌豆零食的细胞壁:形态和机械特性及有限元建模。

Cell walls of extruded pea snacks: Morphological and mechanical characterisation and finite element modelling.

机构信息

INRAE, UR 1268 Biopolymers Interactions and Assemblies (BIA), 44316 Nantes, France.

INRAE, UR 1268 Biopolymers Interactions and Assemblies (BIA), 44316 Nantes, France.

出版信息

Food Res Int. 2022 Dec;162(Pt B):112047. doi: 10.1016/j.foodres.2022.112047. Epub 2022 Oct 22.

Abstract

Pulses extruded foods can be envisaged asall solid foams with voids and walls, the latter being considered as a dense starch/protein composite. Pea flour (PF) and blends of pea starch and pea protein isolate (PPI) with different protein contents (0.5-88% dry basis) were extruded to obtain models of dense starch-protein composites. Their morphology was revealed by CLSM microscopy, and their mechanical properties were investigated using a three-point bending test complemented by Finite Element Method (FEM) modelling. Composite morphology revealed protein aggregates dispersed in the starch matrix. It was described by a starch-protein interface index I computed from the measured total area and perimeter of protein aggregates. The mechanical test showed that the extruded PF and PPI ruptured in the elastic domain, while the extruded starch-PPI (SP) blends ruptured in the plasticity domain. The mechanical properties of pea composites were weakened by increasing the particle volume fractions, including proteins and fibres, probably due to the poor adhesion between starch and the other constituents. The mechanical behaviour of pea composites did not accurately follow simple mixing laws because of their morphological heterogeneity. Modelling results show that the elastoplastic constitutive model using the Voce plasticity model satisfactorily described the hardening behaviour of SP blend composites. Reasonable agreement (2-10%) was found between the experimental and modelling approaches for most materials. The computed Young's modulus (1.3-2.5 GPa) and saturation flow stress (20-45 MPa) increased with increasing I (0.7-3.1), reflecting the increase of interfacial stiffening with the increase of contact area between starch and proteins. FEM modelling allowed to identify the mechanical effect of structural heterogeneities.

摘要

挤压膨化食品可以被视为具有空隙和壁的全固体泡沫,后者被认为是致密的淀粉/蛋白质复合材料。豌豆粉(PF)和豌豆淀粉与豌豆分离蛋白(PPI)的混合物(干基的 0.5-88%)被挤压以获得致密淀粉-蛋白质复合材料的模型。使用三点弯曲试验和有限元法(FEM)建模对其机械性能进行了研究。复合形态揭示了分散在淀粉基质中的蛋白质聚集体。通过从测量的蛋白质聚集体的总面积和周长计算的淀粉-蛋白质界面指数 I 来描述。机械试验表明,挤出的 PF 和 PPI 在弹性域中破裂,而挤出的淀粉-PPI(SP)混合物在塑性域中破裂。由于淀粉和其他成分之间的附着力差,豌豆复合材料的机械性能因增加颗粒体积分数(包括蛋白质和纤维)而减弱。豌豆复合材料的机械性能没有准确遵循简单的混合定律,因为它们的形态异质性。模型结果表明,使用 Voce 塑性模型的弹塑性本构模型很好地描述了 SP 共混复合材料的硬化行为。对于大多数材料,实验和建模方法之间的吻合度较好(2-10%)。计算得到的杨氏模量(1.3-2.5 GPa)和饱和流动应力(20-45 MPa)随着 I(0.7-3.1)的增加而增加,反映了淀粉和蛋白质之间接触面积增加导致界面强化的增加。有限元建模允许识别结构异质性的机械效应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验