Suppr超能文献

设计基于钛的异质结构作为电催化剂,以提高锂硫电池中多硫化物转化动力学的合理性。

A rational design of titanium-based heterostructures as electrocatalyst for boosted conversion kinetics of polysulfides in Li-S batteries.

机构信息

School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, PR China.

School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, PR China.

出版信息

J Colloid Interface Sci. 2023 Mar;633:432-440. doi: 10.1016/j.jcis.2022.11.092. Epub 2022 Nov 28.

Abstract

Lithium-sulfur batteries have great potential for next-generation electrochemical storage systems owing to their high theoretical specific energy and cost-effectiveness. However, the shuttle effect of soluble polysulfides and sluggish multi-electron sulfur redox reactions has severely impeded the implementation of lithium-sulfur batteries. Herein, we prepared a new type of TiC-TiO heterostructure sandwich nanosheet confined within polydopamine derived N-doped porous carbon. The highly polar heterostructures sandwich nanosheet with a high specific surface area can strongly absorb polysulfides, restraining their outward diffusion into the electrolyte. Abundant boundary defects constructed by new types of heterostructures reduce the overpotential of nucleation and improve the nucleation/conversion redox kinetics of LiS. The TiC-TiO@NC/S cathode exhibited discharge capacities of 1363, and 801 mAh g at the first and 100th cycles at 0.5C, respectively, and retained an ultralow capacity fade rate of 0.076% per cycle over 500cycles at 1.0C. This study provides a potential avenue for constructing heterostructure materials for electrochemical energy storage and catalysis.

摘要

锂硫电池因其高理论比能量和成本效益而在下一代电化学储能系统中具有巨大潜力。然而,可溶性多硫化物的穿梭效应和多电子硫氧化还原反应的缓慢动力学严重阻碍了锂硫电池的实际应用。在此,我们制备了一种新型的 TiC-TiO 异质结构夹层纳米片,其被限制在由聚多巴胺衍生的 N 掺杂多孔碳中。具有高比表面积的高度极性异质结构夹层纳米片可以强烈吸附多硫化物,抑制其向电解液中的扩散。新型异质结构构建的丰富边界缺陷降低了成核的过电位,提高了 LiS 的成核/转化氧化还原动力学。TiC-TiO@NC/S 正极在 0.5C 下第 1 次和第 100 次循环的放电容量分别为 1363 和 801 mAh g-1,在 1.0C 下经过 500 次循环后,具有超低的容量衰减率(0.076%/循环)。本研究为构建用于电化学储能和催化的异质结构材料提供了一个潜在途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验