Ye Zhengqing, Jiang Ying, Li Li, Wu Feng, Chen Renjie
Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China.
Adv Mater. 2020 Aug;32(32):e2002168. doi: 10.1002/adma.202002168. Epub 2020 Jun 28.
Lithium-sulfur (Li-S) batteries are recognized as promising candidates for next-generation electrochemical energy storage systems owing to their high energy density and cost-effective raw materials. However, the sluggish multielectron sulfur redox reactions are the root cause of most of the issues for Li-S batteries. Herein, a high-efficiency CoSe electrocatalyst with hierarchical porous nanopolyhedron architecture (CS@HPP) derived from a metal-organic framework is presented as the sulfur host for Li-S batteries. The CS@HPP with high crystal quality and abundant reaction active sites can catalytically accelerate capture/diffusion of polysulfides and precipitation/decomposition of Li S. Thus, the CS@HPP sulfur cathode exhibits an excellent capacity of 1634.9 mAh g , high rate performance, and a long cycle life with a low capacity decay of 0.04% per cycle over 1200 cycles. CoSe nanopolyhedrons are further fabricated on a carbon cloth framework (CC@CS@HPP) to unfold the electrocatalytic activity by its high electrical conductivity and large surface area. A freestanding CC@CS@HPP sulfur cathode with sulfur loading of 8.1 mg cm delivers a high areal capacity of 8.1 mAh cm under a lean electrolyte. This work will enlighten the rational design of structure-catalysis engineering of transition-metal-based nanomaterials for diverse applications.
锂硫(Li-S)电池因其高能量密度和经济高效的原材料而被认为是下一代电化学储能系统的有前途的候选者。然而,缓慢的多电子硫氧化还原反应是锂硫电池大多数问题的根本原因。在此,提出了一种具有分级多孔纳米多面体结构的高效CoSe电催化剂(CS@HPP),它由金属有机框架衍生而来,作为锂硫电池的硫宿主。具有高晶体质量和丰富反应活性位点的CS@HPP可以催化加速多硫化物的捕获/扩散以及Li₂S的沉淀/分解。因此,CS@HPP硫正极表现出1634.9 mAh g的优异容量、高倍率性能以及长循环寿命,在1200次循环中每循环容量衰减低至0.04%。CoSe纳米多面体进一步制备在碳布框架上(CC@CS@HPP),以通过其高电导率和大表面积展现电催化活性。硫负载量为8.1 mg cm⁻²的独立式CC@CS@HPP硫正极在贫电解质条件下可提供8.1 mAh cm⁻²的高面积容量。这项工作将为过渡金属基纳米材料在各种应用中的结构催化工程的合理设计提供启示。