Suppr超能文献

生物分子系统中分子识别的计算机模拟:从计算机筛选到广义系综

Computer simulation of molecular recognition in biomolecular system: from in silico screening to generalized ensembles.

作者信息

Fukunishi Yoshifumi, Higo Junichi, Kasahara Kota

机构信息

Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26, Aomi, Koto-Ku, Tokyo, 135-0064 Japan.

Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima Minamimachi, Chuo-Ku, Kobe, Hyogo 650-0047 Japan.

出版信息

Biophys Rev. 2022 Nov 28;14(6):1423-1447. doi: 10.1007/s12551-022-01015-8. eCollection 2022 Dec.

Abstract

Prediction of ligand-receptor complex structure is important in both the basic science and the industry such as drug discovery. We report various computation molecular docking methods: fundamental in silico (virtual) screening, ensemble docking, enhanced sampling (generalized ensemble) methods, and other methods to improve the accuracy of the complex structure. We explain not only the merits of these methods but also their limits of application and discuss some interaction terms which are not considered in the in silico methods. In silico screening and ensemble docking are useful when one focuses on obtaining the native complex structure (the most thermodynamically stable complex). Generalized ensemble method provides a free-energy landscape, which shows the distribution of the most stable complex structure and semi-stable ones in a conformational space. Also, barriers separating those stable structures are identified. A researcher should select one of the methods according to the research aim and depending on complexity of the molecular system to be studied.

摘要

配体-受体复合物结构的预测在基础科学和诸如药物发现等行业中都很重要。我们报告了各种计算分子对接方法:基础的计算机模拟(虚拟)筛选、整体对接、增强采样(广义系综)方法以及其他提高复合物结构准确性的方法。我们不仅解释了这些方法的优点,还阐述了它们的应用局限性,并讨论了一些计算机模拟方法中未考虑的相互作用项。当关注获得天然复合物结构(热力学上最稳定的复合物)时,计算机模拟筛选和整体对接很有用。广义系综方法提供了一个自由能景观,它显示了构象空间中最稳定复合物结构和半稳定结构的分布。此外,还确定了分隔这些稳定结构的势垒。研究人员应根据研究目的并取决于待研究分子系统的复杂性来选择其中一种方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验