添加还原氧化石墨烯后,混合电纺聚(3-羟基丁酸酯)支架的细胞行为变化和酶促生物降解以及压电阻抗增强。

Cell Behavior Changes and Enzymatic Biodegradation of Hybrid Electrospun Poly(3-hydroxybutyrate)-Based Scaffolds with an Enhanced Piezoresponse after the Addition of Reduced Graphene Oxide.

机构信息

Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russia.

Department of Biotechnology, Ghent University, Ghent, 9000, Belgium.

出版信息

Adv Healthc Mater. 2023 Mar;12(8):e2201726. doi: 10.1002/adhm.202201726. Epub 2023 Jan 1.

Abstract

This is the first comprehensive study of the impact of biodegradation on the structure, surface potential, mechanical and piezoelectric properties of poly(3-hydroxybutyrate) (PHB) scaffolds supplemented with reduced graphene oxide (rGO) as well as cell behavior under static and dynamic mechanical conditions. There is no effect of the rGO addition up to 1.0 wt% on the rate of enzymatic biodegradation of PHB scaffolds for 30 d. The biodegradation of scaffolds leads to the depolymerization of the amorphous phase, resulting in an increase in the degree of crystallinity. Because of more regular dipole order in the crystalline phase, surface potential of all fibers increases after the biodegradation, with a maximum (361 ± 5 mV) after the addition of 1 wt% rGO into PHB as compared to pristine PHB fibers. By contrast, PHB-0.7rGO fibers manifest the strongest effective vertical (0.59 ± 0.03 pm V ) and lateral (1.06 ± 0.02 pm V ) piezoresponse owing to a greater presence of electroactive β-phase. In vitro assays involving primary human fibroblasts reveal equal biocompatibility and faster cell proliferation on PHB-0.7rGO scaffolds compared to pure PHB and nonpiezoelectric polycaprolactone scaffolds. Thus, the developed biodegradable PHB-rGO scaffolds with enhanced piezoresponse are promising for tissue-engineering applications.

摘要

这是首次全面研究生物降解对添加还原氧化石墨烯(rGO)的聚 3-羟基丁酸酯(PHB)支架的结构、表面电势、机械和压电性能的影响,以及在静态和动态机械条件下细胞的行为。在 30 天内,rGO 的添加量高达 1.0wt%对 PHB 支架的酶促生物降解速率没有影响。支架的生物降解导致无定形相的解聚,从而增加了结晶度。由于结晶相中更规则的偶极子序,所有纤维的表面电势在生物降解后都会增加,与纯 PHB 纤维相比,在 PHB 中添加 1wt%rGO 后,表面电势最高(361±5mV)。相比之下,由于存在更多的电活性β相,PHB-0.7rGO 纤维表现出最强的有效垂直(0.59±0.03pmV)和水平(1.06±0.02pmV)压电阻抗。涉及原代人成纤维细胞的体外试验表明,与纯 PHB 和非压电聚己内酯支架相比,PHB-0.7rGO 支架具有相同的生物相容性和更快的细胞增殖。因此,开发的具有增强压电阻抗的可生物降解 PHB-rGO 支架有望用于组织工程应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索