Department of Computer Science, University of Tübingen, Germany.
J Vis. 2022 Dec 1;22(13):5. doi: 10.1167/jov.22.13.5.
Vision researchers are interested in mapping complex physical stimuli to perceptual dimensions. Such a mapping can be constructed using multidimensional psychophysical scaling or ordinal embedding methods. Both methods infer coordinates that agree as much as possible with the observer's judgments so that perceived similarity corresponds with distance in the inferred space. However, a fundamental problem of all methods that construct scalings in multiple dimensions is that the inferred representation can only reflect perception if the scale has the correct dimension. Here we propose a statistical procedure to overcome this limitation. The critical elements of our procedure are i) measuring the scale's quality by the number of correctly predicted triplets and ii) performing a statistical test to assess if adding another dimension to the scale improves triplet accuracy significantly. We validate our procedure through extensive simulations. In addition, we study the properties and limitations of our procedure using "real" data from various behavioral datasets from psychophysical experiments. We conclude that our procedure can reliably identify (a lower bound on) the number of perceptual dimensions for a given dataset.
视觉研究人员感兴趣的是将复杂的物理刺激映射到知觉维度上。这种映射可以使用多维心理物理标度或有序嵌入方法来构建。这两种方法都推断出与观察者的判断尽可能一致的坐标,以便感知的相似性与推断空间中的距离相对应。然而,所有构建多维标度的方法都存在一个基本问题,即只有在标度具有正确的维度时,推断出的表示才能反映感知。在这里,我们提出了一种统计程序来克服这一限制。我们的程序的关键要素是:i)通过正确预测的三元组的数量来衡量标度的质量,ii)进行统计检验以评估向标度添加另一个维度是否会显著提高三元组的准确性。我们通过广泛的模拟验证了我们的程序。此外,我们使用来自各种心理物理实验的行为数据集的“真实”数据来研究我们程序的性质和局限性。我们的结论是,我们的程序可以可靠地识别给定数据集的感知维度数量(下限)。