Suppr超能文献

远程监测正压通气数据:优化数据科学应用需考虑的挑战、陷阱和策略。

Remote Monitoring of Positive Airway Pressure Data: Challenges, Pitfalls, and Strategies to Consider for Optimal Data Science Applications.

机构信息

Laboratoire HP2, U1300 Inserm, University Grenoble Alpes, Grenoble, France; Jean Kuntzmann Laboratory, University Grenoble Alpes, Grenoble, France.

Laboratoire HP2, U1300 Inserm, University Grenoble Alpes, Grenoble, France; Probayes, Montbonnot-Saint-Martin, France.

出版信息

Chest. 2023 May;163(5):1279-1291. doi: 10.1016/j.chest.2022.11.034. Epub 2022 Dec 2.

Abstract

Over recent years, positive airway pressure (PAP) remote monitoring has transformed the management of OSA and produced a large amount of data. Accumulated PAP data provide valuable and objective information regarding patient treatment adherence and efficiency. However, the majority of studies that have analyzed longitudinal PAP remote monitoring have summarized data trajectories in static and simplistic metrics for PAP adherence and the residual apnea-hypopnea index by the use of mean or median values. The aims of this article are to suggest directions for improving data cleaning and processing and to address major concerns for the following data science applications: (1) conditions for residual apnea-hypopnea index reliability, (2) lack of standardization of indicators provided by different PAP models, (3) missing values, and (4) consideration of treatment interruptions. To allow fair comparison among studies and to avoid biases in computation, PAP data processing and management should be conducted rigorously with these points in mind. PAP remote monitoring data contain a wealth of information that currently is underused in the field of sleep research. Improving the quality and standardizing data handling could facilitate data sharing among specialists worldwide and enable artificial intelligence strategies to be applied in the field of sleep apnea.

摘要

近年来,正压通气(PAP)远程监测改变了阻塞性睡眠呼吸暂停(OSA)的管理方式,并产生了大量数据。累积的 PAP 数据提供了有关患者治疗依从性和效率的有价值和客观的信息。然而,大多数分析纵向 PAP 远程监测的研究都使用平均值或中位数来总结 PAP 依从性和残留呼吸暂停低通气指数的静态和简单指标的数据分析轨迹。本文的目的是提出改进数据清理和处理的方向,并解决以下数据科学应用的主要问题:(1)残留呼吸暂停低通气指数可靠性的条件,(2)不同 PAP 模型提供的指标缺乏标准化,(3)缺失值,以及(4)考虑治疗中断。为了允许在研究之间进行公平比较,并避免计算中的偏差,应该牢记这些要点,严格进行 PAP 远程监测数据的处理和管理。PAP 远程监测数据包含大量目前在睡眠研究领域尚未充分利用的信息。提高数据质量和标准化数据处理可以促进全球专家之间的数据共享,并使人工智能策略能够应用于睡眠呼吸暂停领域。

相似文献

引用本文的文献

2
Artificial intelligence in obstructive sleep apnea: A bibliometric analysis.阻塞性睡眠呼吸暂停中的人工智能:一项文献计量分析。
Digit Health. 2025 Mar 21;11:20552076251324446. doi: 10.1177/20552076251324446. eCollection 2025 Jan-Dec.

本文引用的文献

9
Telemedicine in Sleep-Disordered Breathing: Expanding the Horizons.远程医疗在睡眠呼吸障碍中的应用:拓展视野。
Sleep Med Clin. 2021 Sep;16(3):417-445. doi: 10.1016/j.jsmc.2021.05.009. Epub 2021 Jul 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验