Suppr超能文献

基于卷积神经网络的喉镜检查质量控制解剖部位识别:一项多中心研究。

Convolutional neural network based anatomical site identification for laryngoscopy quality control: A multicenter study.

作者信息

Zhu Ji-Qing, Wang Mei-Ling, Li Ying, Zhang Wei, Li Li-Juan, Liu Lin, Zhang Yan, Han Cai-Juan, Tie Cheng-Wei, Wang Shi-Xu, Wang Gui-Qi, Ni Xiao-Guang

机构信息

Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.

出版信息

Am J Otolaryngol. 2023 Mar-Apr;44(2):103695. doi: 10.1016/j.amjoto.2022.103695. Epub 2022 Nov 24.

Abstract

OBJECTIVES

Video laryngoscopy is an important diagnostic tool for head and neck cancers. The artificial intelligence (AI) system has been shown to monitor blind spots during esophagogastroduodenoscopy. This study aimed to test the performance of AI-driven intelligent laryngoscopy monitoring assistant (ILMA) for landmark anatomical sites identification on laryngoscopic images and videos based on a convolutional neural network (CNN).

MATERIALS AND METHODS

The laryngoscopic images taken from January to December 2018 were retrospectively collected, and ILMA was developed using the CNN model of Inception-ResNet-v2 + Squeeze-and-Excitation Networks (SENet). A total of 16,000 laryngoscopic images were used for training. These were assigned to 20 landmark anatomical sites covering six major head and neck regions. In addition, the performance of ILMA in identifying anatomical sites was validated using 4000 laryngoscopic images and 25 videos provided by five other tertiary hospitals.

RESULTS

ILMA identified the 20 anatomical sites on the laryngoscopic images with a total accuracy of 97.60 %, and the average sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 100 %, 99.87 %, 97.65 %, and 99.87 %, respectively. In addition, multicenter clinical verification displayed that the accuracy of ILMA in identifying the 20 targeted anatomical sites in 25 laryngoscopic videos from five hospitals was ≥95 %.

CONCLUSION

The proposed CNN-based ILMA model can rapidly and accurately identify the anatomical sites on laryngoscopic images. The model can reflect the coverage of anatomical regions of the head and neck by laryngoscopy, showing application potential in improving the quality of laryngoscopy.

摘要

目的

视频喉镜检查是头颈部癌症的重要诊断工具。人工智能(AI)系统已被证明可在食管胃十二指肠镜检查期间监测盲点。本研究旨在基于卷积神经网络(CNN)测试人工智能驱动的智能喉镜监测助手(ILMA)在喉镜图像和视频上识别标志性解剖部位的性能。

材料与方法

回顾性收集2018年1月至12月拍摄的喉镜图像,并使用Inception-ResNet-v2 + 挤压与激励网络(SENet)的CNN模型开发ILMA。总共16000张喉镜图像用于训练。这些图像被分配到覆盖六个主要头颈部区域的20个标志性解剖部位。此外,使用其他五家三级医院提供的4000张喉镜图像和25个视频验证了ILMA在识别解剖部位方面的性能。

结果

ILMA在喉镜图像上识别出20个解剖部位,总准确率为97.60%,平均灵敏度、特异度、阳性预测值(PPV)和阴性预测值(NPV)分别为100%、99.87%、97.65%和99.87%。此外,多中心临床验证显示,ILMA在识别来自五家医院的25个喉镜视频中20个目标解剖部位的准确率≥95%。

结论

所提出的基于CNN的ILMA模型能够快速、准确地识别喉镜图像上的解剖部位。该模型可以反映喉镜检查对头颈部解剖区域的覆盖情况,在提高喉镜检查质量方面显示出应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验