Suppr超能文献

使用深度学习技术自动识别喉镜图像。

Automatic Recognition of Laryngoscopic Images Using a Deep-Learning Technique.

机构信息

Department of Otorhinolaryngology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.

Medical Oncology and Medical Biophysics, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.

出版信息

Laryngoscope. 2020 Nov;130(11):E686-E693. doi: 10.1002/lary.28539. Epub 2020 Feb 18.

Abstract

OBJECTIVES/HYPOTHESIS: To develop a deep-learning-based computer-aided diagnosis system for distinguishing laryngeal neoplasms (benign, precancerous lesions, and cancer) and improve the clinician-based accuracy of diagnostic assessments of laryngoscopy findings.

STUDY DESIGN

Retrospective study.

METHODS

A total of 24,667 laryngoscopy images (normal, vocal nodule, polyps, leukoplakia and malignancy) were collected to develop and test a convolutional neural network (CNN)-based classifier. A comparison between the proposed CNN-based classifier and the clinical visual assessments (CVAs) by 12 otolaryngologists was conducted.

RESULTS

In the independent testing dataset, an overall accuracy of 96.24% was achieved; for leukoplakia, benign, malignancy, normal, and vocal nodule, the sensitivity and specificity were 92.8% vs. 98.9%, 97% vs. 99.7%, 89% vs. 99.3%, 99.0% vs. 99.4%, and 97.2% vs. 99.1%, respectively. Furthermore, when compared with CVAs on the randomly selected test dataset, the CNN-based classifier outperformed physicians for most laryngeal conditions, with striking improvements in the ability to distinguish nodules (98% vs. 45%, P < .001), polyps (91% vs. 86%, P < .001), leukoplakia (91% vs. 65%, P < .001), and malignancy (90% vs. 54%, P < .001).

CONCLUSIONS

The CNN-based classifier can provide a valuable reference for the diagnosis of laryngeal neoplasms during laryngoscopy, especially for distinguishing benign, precancerous, and cancer lesions.

LEVEL OF EVIDENCE

NA Laryngoscope, 130:E686-E693, 2020.

摘要

目的/假设:开发一种基于深度学习的计算机辅助诊断系统,用于区分喉肿瘤(良性、癌前病变和癌症),并提高临床医生对喉镜检查结果的诊断评估准确性。

研究设计

回顾性研究。

方法

共收集了 24667 张喉镜图像(正常、声带小结、息肉、白斑和恶性肿瘤),用于开发和测试基于卷积神经网络(CNN)的分类器。比较了所提出的基于 CNN 的分类器与 12 位耳鼻喉科医生的临床视觉评估(CVA)。

结果

在独立测试数据集上,达到了 96.24%的总体准确率;对于白斑、良性、恶性、正常和声带小结,敏感性和特异性分别为 92.8%和 98.9%、97%和 99.7%、89%和 99.3%、99.0%和 99.4%以及 97.2%和 99.1%。此外,与随机选择的测试数据集上的 CVA 相比,基于 CNN 的分类器在大多数喉部疾病的诊断中优于医生,在区分结节(98%对 45%,P<.001)、息肉(91%对 86%,P<.001)、白斑(91%对 65%,P<.001)和恶性肿瘤(90%对 54%,P<.001)方面能力显著提高。

结论

基于 CNN 的分类器可以为喉镜检查中喉肿瘤的诊断提供有价值的参考,特别是在区分良性、癌前病变和癌症病变方面。

证据水平

无 喉镜,130:E686-E693,2020 年。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验