Department of Otorhinolaryngology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
Medical Oncology and Medical Biophysics, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
Laryngoscope. 2020 Nov;130(11):E686-E693. doi: 10.1002/lary.28539. Epub 2020 Feb 18.
OBJECTIVES/HYPOTHESIS: To develop a deep-learning-based computer-aided diagnosis system for distinguishing laryngeal neoplasms (benign, precancerous lesions, and cancer) and improve the clinician-based accuracy of diagnostic assessments of laryngoscopy findings.
Retrospective study.
A total of 24,667 laryngoscopy images (normal, vocal nodule, polyps, leukoplakia and malignancy) were collected to develop and test a convolutional neural network (CNN)-based classifier. A comparison between the proposed CNN-based classifier and the clinical visual assessments (CVAs) by 12 otolaryngologists was conducted.
In the independent testing dataset, an overall accuracy of 96.24% was achieved; for leukoplakia, benign, malignancy, normal, and vocal nodule, the sensitivity and specificity were 92.8% vs. 98.9%, 97% vs. 99.7%, 89% vs. 99.3%, 99.0% vs. 99.4%, and 97.2% vs. 99.1%, respectively. Furthermore, when compared with CVAs on the randomly selected test dataset, the CNN-based classifier outperformed physicians for most laryngeal conditions, with striking improvements in the ability to distinguish nodules (98% vs. 45%, P < .001), polyps (91% vs. 86%, P < .001), leukoplakia (91% vs. 65%, P < .001), and malignancy (90% vs. 54%, P < .001).
The CNN-based classifier can provide a valuable reference for the diagnosis of laryngeal neoplasms during laryngoscopy, especially for distinguishing benign, precancerous, and cancer lesions.
NA Laryngoscope, 130:E686-E693, 2020.
目的/假设:开发一种基于深度学习的计算机辅助诊断系统,用于区分喉肿瘤(良性、癌前病变和癌症),并提高临床医生对喉镜检查结果的诊断评估准确性。
回顾性研究。
共收集了 24667 张喉镜图像(正常、声带小结、息肉、白斑和恶性肿瘤),用于开发和测试基于卷积神经网络(CNN)的分类器。比较了所提出的基于 CNN 的分类器与 12 位耳鼻喉科医生的临床视觉评估(CVA)。
在独立测试数据集上,达到了 96.24%的总体准确率;对于白斑、良性、恶性、正常和声带小结,敏感性和特异性分别为 92.8%和 98.9%、97%和 99.7%、89%和 99.3%、99.0%和 99.4%以及 97.2%和 99.1%。此外,与随机选择的测试数据集上的 CVA 相比,基于 CNN 的分类器在大多数喉部疾病的诊断中优于医生,在区分结节(98%对 45%,P<.001)、息肉(91%对 86%,P<.001)、白斑(91%对 65%,P<.001)和恶性肿瘤(90%对 54%,P<.001)方面能力显著提高。
基于 CNN 的分类器可以为喉镜检查中喉肿瘤的诊断提供有价值的参考,特别是在区分良性、癌前病变和癌症病变方面。
无 喉镜,130:E686-E693,2020 年。