Suppr超能文献

家庭护理干预作为阻塞性睡眠呼吸暂停的服务模式:使用患者特征分析和依从性预测提供个性化电话服务。

Homecare interventions as a Service model for Obstructive sleep Apnea: Delivering personalised phone call using patient profiling and adherence predictions.

机构信息

Linde Homecare, France; Lyon 2 University, France.

Lyon 2 University, France.

出版信息

Int J Med Inform. 2023 Feb;170:104935. doi: 10.1016/j.ijmedinf.2022.104935. Epub 2022 Nov 28.

Abstract

BACKGROUND AND OBJECTIVE

Obstructive Sleep Apnea (OSA) is a sleep disorder that leads to different pathologies like depression and cardiovascular problems. The first-line medical treatment for OSA is Continuous Positive Airway Pressure (CPAP) therapy. However, this therapy has the lowest adherence level when compared to other homecare therapies. Consequently, the main objective of this paper is to increase this adherence level with methods that can be replicated in a large number of patients.

METHODS

The Homecare Intervention as a Service model can build, verify, and deliver per-sonalised home care interventions. With the Homecare Intervention as a Service model, we build and provide on-demand personalised interventions according to the patient's needs. The 2 core components of this model are patient clustering and CPAP adherence predictions. To define the patient profiles and predict the adherence level, we apply the K-means and the Logistic Regression algorithm respectively. To support these algorithms, we use the CPAP monitoring data and qualitative data on the patients.

RESULTS

We demonstrate that there are 3 patient profiles (non-adherent, attempter, and adherent). We draw a comparison with multiple machine learning algorithms to predict CPAP adherence at 30, 60 and 90 days. In this case, the Logistic Regression gives the best results with a f1-score of 0.84 for30 days, 0.79 for 60 days and 0.76 for 90 days. These newly build profiles were to be used to deliver personalised phone call interventions. The phone call intervention shows an increase in adherence by 1.02 h/night for non-adherent patients and 0.69 h/night for attempter patients.

CONCLUSIONS

This is the first study in CPAP therapy that formalises the process of transforming raw data into effective home care interventions that can be delivered directly to the patients. In fact,it is the first time that both patient characterisation and predictions based on data are used to provide personalised patient management for CPAP therapy. Our model is flexible to be extended to new types of interventions and other homecare therapies.

摘要

背景和目的

阻塞性睡眠呼吸暂停(OSA)是一种导致抑郁和心血管问题等不同病理的睡眠障碍。OSA 的一线治疗方法是持续气道正压通气(CPAP)疗法。然而,与其他家庭护理疗法相比,这种疗法的依从性最低。因此,本文的主要目的是通过可以在大量患者中复制的方法来提高这种依从性。

方法

家庭护理干预即服务模型可以构建、验证和提供个性化家庭护理干预措施。使用家庭护理干预即服务模型,我们根据患者的需求构建和提供按需个性化干预措施。该模型的 2 个核心组件是患者聚类和 CPAP 依从性预测。为了定义患者的特征并预测依从性水平,我们分别应用 K-means 和逻辑回归算法。为了支持这些算法,我们使用 CPAP 监测数据和患者的定性数据。

结果

我们证明存在 3 种患者特征(不依从、尝试者和依从者)。我们与多种机器学习算法进行比较,以预测 30、60 和 90 天的 CPAP 依从性。在这种情况下,逻辑回归在 30 天、60 天和 90 天的 f1 分数分别为 0.84、0.79 和 0.76,给出了最佳结果。这些新构建的特征将用于提供个性化电话干预措施。电话干预措施使不依从患者的依从性增加 1.02 小时/夜,尝试者患者的依从性增加 0.69 小时/夜。

结论

这是 CPAP 治疗中第一项将原始数据转化为可以直接提供给患者的有效家庭护理干预措施的正式化过程的研究。事实上,这是第一次使用基于数据的患者特征描述和预测来为 CPAP 治疗提供个性化的患者管理。我们的模型具有灵活性,可以扩展到新类型的干预措施和其他家庭护理疗法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验