Linde Homecare, France; Lyon 2 University, France.
Lyon 2 University, France.
Int J Med Inform. 2023 Feb;170:104935. doi: 10.1016/j.ijmedinf.2022.104935. Epub 2022 Nov 28.
Obstructive Sleep Apnea (OSA) is a sleep disorder that leads to different pathologies like depression and cardiovascular problems. The first-line medical treatment for OSA is Continuous Positive Airway Pressure (CPAP) therapy. However, this therapy has the lowest adherence level when compared to other homecare therapies. Consequently, the main objective of this paper is to increase this adherence level with methods that can be replicated in a large number of patients.
The Homecare Intervention as a Service model can build, verify, and deliver per-sonalised home care interventions. With the Homecare Intervention as a Service model, we build and provide on-demand personalised interventions according to the patient's needs. The 2 core components of this model are patient clustering and CPAP adherence predictions. To define the patient profiles and predict the adherence level, we apply the K-means and the Logistic Regression algorithm respectively. To support these algorithms, we use the CPAP monitoring data and qualitative data on the patients.
We demonstrate that there are 3 patient profiles (non-adherent, attempter, and adherent). We draw a comparison with multiple machine learning algorithms to predict CPAP adherence at 30, 60 and 90 days. In this case, the Logistic Regression gives the best results with a f1-score of 0.84 for30 days, 0.79 for 60 days and 0.76 for 90 days. These newly build profiles were to be used to deliver personalised phone call interventions. The phone call intervention shows an increase in adherence by 1.02 h/night for non-adherent patients and 0.69 h/night for attempter patients.
This is the first study in CPAP therapy that formalises the process of transforming raw data into effective home care interventions that can be delivered directly to the patients. In fact,it is the first time that both patient characterisation and predictions based on data are used to provide personalised patient management for CPAP therapy. Our model is flexible to be extended to new types of interventions and other homecare therapies.
阻塞性睡眠呼吸暂停(OSA)是一种导致抑郁和心血管问题等不同病理的睡眠障碍。OSA 的一线治疗方法是持续气道正压通气(CPAP)疗法。然而,与其他家庭护理疗法相比,这种疗法的依从性最低。因此,本文的主要目的是通过可以在大量患者中复制的方法来提高这种依从性。
家庭护理干预即服务模型可以构建、验证和提供个性化家庭护理干预措施。使用家庭护理干预即服务模型,我们根据患者的需求构建和提供按需个性化干预措施。该模型的 2 个核心组件是患者聚类和 CPAP 依从性预测。为了定义患者的特征并预测依从性水平,我们分别应用 K-means 和逻辑回归算法。为了支持这些算法,我们使用 CPAP 监测数据和患者的定性数据。
我们证明存在 3 种患者特征(不依从、尝试者和依从者)。我们与多种机器学习算法进行比较,以预测 30、60 和 90 天的 CPAP 依从性。在这种情况下,逻辑回归在 30 天、60 天和 90 天的 f1 分数分别为 0.84、0.79 和 0.76,给出了最佳结果。这些新构建的特征将用于提供个性化电话干预措施。电话干预措施使不依从患者的依从性增加 1.02 小时/夜,尝试者患者的依从性增加 0.69 小时/夜。
这是 CPAP 治疗中第一项将原始数据转化为可以直接提供给患者的有效家庭护理干预措施的正式化过程的研究。事实上,这是第一次使用基于数据的患者特征描述和预测来为 CPAP 治疗提供个性化的患者管理。我们的模型具有灵活性,可以扩展到新类型的干预措施和其他家庭护理疗法。