Suppr超能文献

FLAIR、ADC 图、eADC 图、T1 图和 SWI 图像在胶质瘤分级中的多参数研究。

Multiparametric study for glioma grading with FLAIR, ADC map, eADC map, T1 map, and SWI images.

机构信息

Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

出版信息

Magn Reson Imaging. 2023 Feb;96:93-101. doi: 10.1016/j.mri.2022.12.004. Epub 2022 Dec 5.

Abstract

PURPOSE

This paper is a preliminary attempt to compare the diagnostic efficiency and performance of Fluid-attenuated inversion recovery (FLAIR), apparent diffusion coefficient (ADC) map, exponential ADC (eADC) map, T map, and Susceptibility-weighted image (SWI) for glioma grading and combine these image data pairs to compare the diagnostic performance of different image data pairs for glioma grading.

MATERIAL AND METHODS

Fifty-nine patients underwent FLAIR, ADC map, eADC map, Variable flip-angle (VFA) spoiled gradient recalled echo (SPGR) method, and SWI MRI imaging. The T map was reconstructed by the VFA-SPGR method. The average Relative Signal Contrast (RSC) and receiver operating characteristic curve (ROC) was calculated in a different image. The multivariate binary logistic regression model combined different image data pairs.

RESULTS

The average RSC of SWI and ADC maps in high-grade glioma is significantly lower than RSCs in low-grade. The average RSC of the eADC map and T maps increased with glioma grade. No significant difference was detected between low and high-grade glioma on FLAIR images. The AUC for low and high-grade glioma differentiation on ADC maps, eADC maps, T map, and SWI were calculated 0.781, 0.864, 0.942, and 0.904, respectively. Also, by adding different image data, diagnostic performance was increased.

CONCLUSION

Interestingly, the T map and SWI image have the potential to use in the clinic for glioma grading purposes due to their high performance. Also, the eADC map+T map and T map+SWI image weights have the highest diagnostic performance for glioma grading.

摘要

目的

本文旨在初步尝试比较液体衰减反转恢复(FLAIR)、表观扩散系数(ADC)图、指数 ADC(eADC)图、T 图和磁敏感加权成像(SWI)在胶质瘤分级中的诊断效率和性能,并结合这些图像数据对来比较不同图像数据对用于胶质瘤分级的诊断性能。

材料与方法

59 例患者行 FLAIR、ADC 图、eADC 图、可变翻转角(VFA)扰相梯度回波(SPGR)法和 SWI MRI 成像。T 图由 VFA-SPGR 法重建。在不同的图像中计算平均相对信号对比度(RSC)和受试者工作特征曲线(ROC)。多元二项逻辑回归模型结合了不同的图像数据对。

结果

高级别胶质瘤的 SWI 和 ADC 图的平均 RSC 明显低于低级别胶质瘤。eADC 图和 T 图的平均 RSC 随胶质瘤分级的升高而升高。FLAIR 图像上高低级别胶质瘤之间未检测到显著差异。在 ADC 图、eADC 图、T 图和 SWI 上区分低级别和高级别胶质瘤的 AUC 分别计算为 0.781、0.864、0.942 和 0.904。此外,通过添加不同的图像数据,诊断性能得到提高。

结论

有趣的是,由于 T 图和 SWI 图像具有较高的性能,因此它们有可能在临床上用于胶质瘤分级。此外,eADC 图+T 图和 T 图+SWI 图像权重对胶质瘤分级具有最高的诊断性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验