Liu Kristina S, Ma Xiaoxin, Rizzato Roberto, Semrau Anna L, Henning Alex, Sharp Ian D, Fischer Roland A, Bucher Dominik B
Department of Chemistry, Technical University of Munich, 85748Garching, Germany.
Walter Schottky Institute and Physics Department, Technical University of Munich, 85748Garching, Germany.
Nano Lett. 2022 Dec 28;22(24):9876-9882. doi: 10.1021/acs.nanolett.2c03069. Epub 2022 Dec 8.
Atomic-scale magnetic field sensors based on nitrogen vacancy (NV) defects in diamonds are an exciting platform for nanoscale nuclear magnetic resonance (NMR) spectroscopy. The detection of NMR signals from a few zeptoliters to single molecules or even single nuclear spins has been demonstrated using NV centers close to the diamond surface. However, fast molecular diffusion of sample molecules in and out of the nanoscale detection volumes impedes their detection and limits current experiments to solid-state or highly viscous samples. Here, we show that restricting diffusion by confinement enables nanoscale NMR spectroscopy of liquid samples. Our approach uses metal-organic frameworks (MOF) with angstrom-sized pores on a diamond chip to trap sample molecules near the NV centers. This enables the detection of NMR signals from a liquid sample, which would not be detectable without confinement. These results set the route for nanoscale liquid-phase NMR with high spectral resolution.
基于金刚石中氮空位(NV)缺陷的原子尺度磁场传感器是用于纳米级核磁共振(NMR)光谱学的一个令人兴奋的平台。利用靠近金刚石表面的NV中心,已经证明了可以检测从几zeptoliters到单分子甚至单核自旋的NMR信号。然而,样品分子在纳米级检测体积内快速的分子扩散阻碍了它们的检测,并将当前实验限制在固态或高粘性样品上。在这里,我们表明通过限制扩散能够实现液体样品的纳米级NMR光谱学。我们的方法是在金刚石芯片上使用具有埃级孔径的金属有机框架(MOF)来捕获靠近NV中心的样品分子。这使得能够检测来自液体样品的NMR信号,而在没有限制的情况下这些信号是无法检测到的。这些结果为具有高光谱分辨率的纳米级液相NMR奠定了基础。